WORKSHEET #2 – MATH 3210 FALL 2018

DUE MONDAY SEPTEMBER 17TH

You may work in groups of up to 4. Only one worksheet is required per group.

We recall some definitions.

Definition. A sequence $\{a_n\}$ is called *bounded* if there exists an $K \ge 0$ such that $|a_n| < K$ for all n. It is *bounded above* if there is a $K \in \mathbb{R}$ such that $a_n < K$ for all n. It is *bounded below* if there is a $K \in \mathbb{R}$ such that $a_n > K$ for all n.

Definition. A sequence $\{a_n\}$ is called *non-decreasing* if $a_n \leq a_{n+1}$ for all n. A sequence is called *non-increasing* if $a_n \geq a_{n+1}$ for all n. If a sequence is either non-increasing or non-decreasing, we call the sequence *monotone*.

- 1. Write down examples of the following (proofs are not required):
 - (a) A non-decreasing sequence that is not bounded. (2 points)
 - (b) An bounded sequence that is both not non-decreasing and not non-increasing. (2 points)
 - (c) A bounded sequence that does not converge to anything. (2 points)

2. Suppose that $\{a_n\}_{n=1}^{\infty}$ is a bounded below sequence. Consider the set $A = \{x \mid x = a_n \text{ for some } n\}$. Show that the set A is bounded below and so we can define $B = \inf A = \inf \{a_n\}$ as a real number (and not negative infinity). (2 points)

Recall the following fact about infimums. If S is a bounded below set and $B = \inf S$, then for every C > B, there exists some $x \in S$ such that x < C. This is Theorem 1.5.4 from the text for infimums instead of supremums.

3. Suppose next that $\{a_n\}_{n=1}^{\infty}$ is a bounded below sequence that is also non-increasing and that $B = \inf A = \inf \{a_n\}$ as above. We will show that $\lim a_n = B$. (4 points)

Hint: Fix $\epsilon > 0$, let $C = B + \epsilon$. Use the hint above to find some $a_n < B + \epsilon$, then use the fact that a_n is non-increasing.

4. If $a_1 = 1$ and we recursive define $a_{n+1} = (1 - 2^{-n})a_n$, prove that $\{a_n\}$ converges. (3 points)