WORKSHEET #1 — MATH 3210
FALL 2018

You may work in groups of up to 4. Only one worksheet is required per group.

Definition A commutative ring is a set R with a binary operation + (plus) and another binary operation -
(times) satisfying the following axioms.

Al z+y=y+zforal z,y € R. M1 xy = yx for all z,y € R.

A2 2+ (y+2)=(r+vy)+zforall z,y,z € R. M2 z(yz) = (zy)z for all z,y,z € R.

A3 There is an element 0 € R such that 0+ =z M3 There is an element 1 € R such that 1 # 0
for all z € R. and 1z = z for all z € R.

A4 For each z € R, there is an element —x € R D z(y+ z) =ay + xz for all z,y,2 € R.

such that = + (—z) = 0.

The integers are a ring under the usual + and -. Some basic facts about integers immediately follow from
the above axioms. For instance, the fact that 0 -z = 0 for all x € R can be prove as follows. First note that
0+0=0 by A3. Thus

z-0=2-(0+0)=2-04+2-0
where the second equality is by item D. We don’t know what x - 0 is, but if we write y := x - 0 then we have
just shown that y = y + y. But then adding —y to both sides we see that
y+(=y)=y+y+(-y)
and so
O=y=2-0=0-x
as desired.

Let’s prove a similar fact.

1. Suppose that R is a ring and 0’ € R is a element such that 0’ +y = y for all y € R. Prove that 0 must be
equal to 0 € R. (Show the additive inverse is unique)

Solution: Notice that 0’ = 0/ + 0 by the defining property of 0, but also 0’ + 0 = 0, by the defining
property of 0. Hence 0 = 0.
2. Prove that for every © € R, (—1)xz = —x. Here —1 is the element corresponding to 1 given by A4.

Hint: Add x =1-x to (—1) - z and factor (at some step at least).

Solution: We know that 0 -2z = 0 from the above and we also know that (1 + —1) = 0. Hence using
property D, and M3, we have

0=0-z=(1+-1)-z2=1-z24+(-1)-z2=2+(-1)-
Using A4 and adding —x to both sides we get
—r = a4 (21) a o+ (—) =0+ (1) = (1),

as desired.



3. Prove that (—1) - (-1) = 1.
Solution: We know by 2. that z:= (—1) - (—1) = —(—1). Hence
0=—(-1)+—-1=z+ -1
Adding 1 to both sides and using A3, we get
1=04+1=2+-14+1=24+0==z2.
This completes the proof.

Definition A field is a ring with the following axiom added.
M4 For each x € R such that 0 # z, there exists an element (called) 2=! € R such that 71z = 1.

The rational numbers Q are a field. So are the real numbers, but you might find this less appealing.

4. Suppose that x,y, z are elements of a field R. Show that if z # 0, then if zz = yz, then = = y.

Solution: Since z # 0, by M4, there exists 2~ ! so that z='z = 1. Then multiplying the equation zz = yz
through by z~! and using M3, M2, and M4 we have that

r=x-1=2(227") = (22)z7 = (y2)z L =ylzz ) =y-1=1y.

5. Suppose that R is a field and x,y € R. Prove that if xy = 0 then either z = 0 or y = 0.

Solution: For a contradiction suppose z # 0 and y # 0, then there exists 2~! by M4 so that 2~ 'z = 1.
Then if 2y = 0, using our assumptions and M4, M1, M2 and the fact that 0 - (anything) = 0, we have:

0Fy=1-y=(zz y=(a"zy) =z (ay) =2~ - 0=0.

Definition A field F is called an ordered field if there is an order relation < satisfying the following axioms
for all x,y,z € F.

O1 Either x <y ory < x. O4 Ifzr<ythenzx+z<y+=z
02 Ifr <yandy <z thenz=y. 05 If x <y and 0 < z, then zz < yz.
03 If x <y and y < z then x < 2.

6. Suppose that ,y € F an ordered field. Show that if 0 < x < y, then y~! < 271

Solution: There is more than one correct way to do this. Here’s one approach.
First we prove that 1 > 0. Indeed, if 1 < 0, then adding —1 to both sides and using O4, we see that 0 < —1.
But then by O5,
0=0-(-1)<(-1)-(-1)=1
by 3. A contradiction. Hence 1 > 0.
Next we show that =% > 0 since # > 0 (and likewise y~! > 0). For a contradiction, suppose that 2= < 0,
then multiplying through by > 0 and using O5, we see that

1:J;x_1<0-x_1:(),

which contradicts the first thing we did.
Finally, since = > 0 and y~! > 0 and = < y, multiplying both sides by 2~y ~! we obtain (liberally using
05 and various other properties of being a field, that

1 1

y =yt l=y @) =@y e < (@ ly Yy =27y y) =27

~1:m_1,

as desired.



