QUIZ #1 - MATH 3210 FALL 2018

1. Consider the following sets.

$$A = \{7, 3, \emptyset, \star\}, B = \mathbb{Z}, C = [0, \pi].$$

Compute the following:

(a) $A \cap B \cap C$. (3 points)

Solution: $A \cap B = \{7, 3\}$ and so

$$A \cap B \cap C = \{7, 3\} \cap [0, \pi] = \{3\}.$$

(b) $A \cup (B \cap C)$. (3 points) Solution: $B \cap C = \{0, 1, 2, 3\}$. Thus $A \cup (B \cap C) = A \cup \{0, 1, 2, 3\} = \{7, 3, \emptyset, \star, 0, 1, 2\}.$

Now suppose that $f : \mathbb{R} \to \mathbb{R}$ is the function f(x) = 3x - 1. (c) What is $f^{-1}(A \cap B)$? (3 points)

Solution: First note $A \cap B = \{7, 3\}$ from (a). We need to find x so that $f(x) \in A \cap B$. Suppose first f(x) = 7, then 3x - 1 = 7 and so x = 8/3. Next if f(x) = 3, then 3x - 1 = 3 so x = 4/3. Thus, $f^{-1}(A \cap B) = f^{-1}(\{7, 3\}) = \{8/3, 4/3\}.$

(d) What is $f(C \setminus A)$? (3 points)

Hint: The \setminus notation means "set minus" and in some other texts is written as C - A.

Solution: First we compute $C \setminus A$. This is just the union of two intervals, $[0,3) \cup (3,\pi]$. Now we need to compute the image of this set. Our function is linear, so it will send intervals to intervals. Note f([0,3)) = [-1,8) and $f((3,\pi]) = (8,3\pi - 1]$. Putting this together, we see that

$$f(C \setminus A) = [-1, 8) \cup (8, 3\pi - 1].$$

See the back page for the second problem.

2. Prove by induction that every number of the form $5^n - 2^n$ with $n \in \mathbb{N}$, is divisible by 3. (8 points)

Solution: We begin with the base case of n = 1. In this case $5^1 - 2^1 = 3$ which is divisible by 3, and our base case is done.

Next suppose that $5^k - 2^k$ is divisible by 3. We need to prove that $5^{k+1} - 2^{k+1}$ is also divisible by 3. We write

$$5^{k+1} - 2^{k+1} = 5 \cdot 5^k - 2 \cdot 2^k$$

but this is not clearly a multiple of $5^k - 2^k$, so we must do something else. Using the fact that 5 = 3 + 2 we have that:

$$5 \cdot 5^k - 2 \cdot 2^k = (3+2) \cdot 5^k - 2 \cdot 2^k = 3 \cdot 5^k - 2 \cdot 5^k - 2 \cdot 2^k = 3 \cdot 5^k - 2 \cdot (5^k - 2^k).$$

Now, $3 \cdot 5^k$ is divisible by 3 certainly. Also, $2 \cdot (5^k - 2^k)$ is divisible by 3 by our inductive hypothesis. Thus their difference is also divisible by 3. But now we have shown that

$$5^{k+1} - 2^{k+1} = 3 \cdot 5^k - 2 \cdot (5^k - 2^k)$$

is divisible by 3 which completes the proof by induction that $5^n - 2^n$ is divisible by 3 for every natural number n. Notice this problem is also an example in the text, so you can see a slightly different proof there.