MATH 3210 – MIDTERM #2

Your Name

- You have 50 minutes to do this exam.
- No calculators or notes!
- For justifications, please use complete sentences and make sure to explain any steps which are questionable.
- Good luck!

Problem	Total Points	Score
1	24	
2	26	
3	25	
4	25	
Total	100	

1. Short answer questions (3 points each).

(a) State the second fundamental theorem of calculus.

Solution: Suppose that $f : [a,b] \to \mathbb{R}$ is integrable, then the function $F(x) = \int_a^x f(t)dt$ is continuous and furthermore that F is differentiable with F'(x) = f(x) if f is continuous at x.

(b) Precisely define what it means for a series $\sum_{k=1}^{\infty} a_k$ to converge.

Solution: It means that the sequence of partial sums $\sum_{k=1}^{n} a_k$ converges.

(c) Compute $\lim_{x \to 0^-} \frac{\cos(x) - 1}{\ln(x) - x}$ if it exists. If it does not exist, say that.

Solution: It doesn't exist, $\ln(x)$ isn't defined for negative x.

- (d) Precisely define the function $\ln(x)$ using a definite integral where x is one of the bounds. Solution: $\ln(x) = \int_1^x \frac{1}{t} dt$.
- (e) Identify the critical points of the function $f: [-2\pi, 2\pi] \to \mathbb{R}$ defined by $f(x) = \sin(|x-1|)$.

Solution: The end points are critical points. $x = \pm 2\pi$. The function is also not differentiable at x = 1, so that is a critical point. Finally, the function has zero derivative at $x = 1 - 3\pi/2, 1 - \pi/2, 1 + \pi/2, 1 + 3\pi/2$.

(f) Give a precise definition of the statement $\lim_{x \to -\infty} f(x) = L$.

Solution: It means that for every $\epsilon > 0$, there exists a $K \in \mathbb{R}$, so that if x < K then $|x - L| < \epsilon$

(g) Consider $f: [-1,2] \to \mathbb{R}$ defined by $f(x) = x^2$. Let $P = \{-1,0,1,2\}$. Compute L(f,P).

Solution: We have $m_0 = 0$ (the min of x^2 on [-1,0] is 0), $m_1 = 0$ and $m_2 = 1$. Hence L(f,P) = 0 + 0 + 1.

(h) Suppose that $P \subseteq Q$ is a refinement of partitions of the interval [0,1]. Consider the function $f(x) = \ln(2 + \cos(e^x)) - \sqrt{x^2 + \frac{1}{x^2+1}}$. Arrange the following values from smallest to largest.

$$U(f, P), U(f, Q), L(f, P), L(f, Q), \int_0^1 f(x) dx.$$

Solution: $L(f, P) \leq L(f, Q) \leq \int_0^1 f(x) dx \leq U(f, Q) \leq U(f, P)$

2. Consider the function $f: (-1, \infty) \to \mathbb{R}$ defined by

$$f(x) = \int_{-x}^{\ln(x+e)} (2t)e^{t^2}dt.$$

(a) Compute f'(x). (16 points)

Solution: We break this up into two integrals, $\int_0^{\ln(x+1)} (2t)e^{t^2} dt$ and $\int_{-x}^0 (2t)e^{t^2} dt$. Using the chain rule, we get for the first integral

$$(2\ln(x+e))e^{(\ln(x+e))^2}\frac{1}{x+e}$$

For the second (switching the integrals, and doing the chain rule, and plugging in -x), we get

$$(-1)(-1)(-1)2xe^{x^2}$$
.

Summing this we get

$$(2\ln(x+e))e^{(\ln(x+e))^2}\frac{1}{x+e} - 2xe^{x^2}.$$

(b) Verify that f(0) = e - 1. (4 points)

Hint: Use u substitution if you can't eyeball an anti-derivative.

Solution: An anti-derivative is e^{t^2} , so we have that the integral is $\int_0^1 (2t)e^{t^2}dt = e^{1^2} - e^0 = e - 1$.

(c) Compute $(f^{-1})'(e-1)$. (6 points)

Solution: Since f(0) = e - 1, we certainly have that $f^{-1}(e - 1) = 0$ (it could be based on what we know that f(y) = e - 1 for some other y, but lets not worry about that, it doesn't happen near 0 anyways.) Thus $(f^{-1})'(e - 1) = \frac{1}{f'(f^{-1}(e-1))} = \frac{1}{f'(0)}$. A quick computation show that f'(0) = 2, thus the answer is 1/2.

3. Suppose that $(a, b) \subseteq \mathbb{R}$ is a non-empty open interval and that we have a differentiable function $f: (a, b) \to \mathbb{R}$ such that f'(x) < 0 for all $x \in (a, b)$. Use the Mean Value Theorem to prove that f is strictly decreasing. (25 points)

Solution: Choose x < y with $x, y \in (a, b)$. Then there exists $c \in (x, y)$ such that $f'(c) = \frac{f(y) - f(x)}{y - x}$. Since f'(c) < 0, by clearing denominators we see that f(y) - f(x) < 0. Thus f(y) < f(x) and so f is strictly decreasing.

4. Prove the following theorem.

Theorem. Suppose a < b are real numbers. Suppose $f : [a, b] \to \mathbb{R}$ is continuous. Prove that

$$\int_{a}^{b} f(x) dx$$

exists (in other words, that f is integrable on [a, b]).

Hint: Break up [a, b] into n equal subintervals where n is small enough so that you can force M_k and m_k close really close to each other by *uniform* continuity.

Solution: Fix $\epsilon > 0$. We will show that $U(f, P) - L(f, P) < \epsilon$ for some partition P. First, since f is continuous on [a, b], it is uniformly continuous, so there exists $\delta > 0$ so that if $|x - y| < \delta$ for some $x, y \in [a, b]$, then $|f(x) - f(y)| < \epsilon/(b - a)$. Now, create a partition P by dividing [a, b] into m equal subintervals of length less than δ . Thus on each interval, $[x_{k-1}, x_k]$, we have by the extreme value theorem since f is continuous, that $f([x_k, x_{k+1}])$ has a maximum $M_k = f(y_k)$ and a minimum $m_k = f(z_k)$, with $y_k, z_k \in [x_{k-1}, x_k]$. By construction, $|M_k - m_k| = |f(y_k) - f(z_k)| < \epsilon/(b - a)$. Therefore,

$$U(f,P) - L(f,P) = \sum_{k=1}^{m} (M_k - m_k) \frac{b-a}{m} < m \cdot \frac{\epsilon}{b-a} \cdot \frac{b-a}{m} = \epsilon,$$

as desired.

(EC) Suppose $h : [a,b) \to \mathbb{R}$ is a continuous function which is differentiable on (a,b) and where $\lim_{x \to b^-} h(x) = \infty$. Suppose further that $h([a,b)) = [c,\infty)$. Suppose that $f : [c,\infty) \to \mathbb{R}$ is integrable on every closed interval $[c,r] \subseteq [c,\infty)$. Define a new function $L : [a,b] \to \mathbb{R}$ by

$$L(t) = \begin{cases} f(h(t))h'(t), & t \in [a,b) \\ 7, & t = b \end{cases}$$

and suppose it is integrable on [a, b]. Prove that

$$\int_{h(a)}^{\infty} f(x)dx = \int_{a}^{b} L(t)dt.$$

In particular, show that the improper integral on the left exists.

Solution: L is also integrable on each [a, r] for r < b. Hence consider the function $H(x) = \int_a^x L(t)dt$. We know from the fundamental theorem of calculus part II that H(x) is continuous on [a, b] so that $\lim_{x \longrightarrow b} H(x) = H(b)$. Note $H(x) = \int_{h(a)}^{h(x)} f(u)du$ by u-substitution. Therefore

$$\int_{a}^{b} L(t)dt = H(b) = \lim_{x \longrightarrow b} \int_{h(a)}^{h(x)} f(u)du = \int_{h(a)}^{\infty} f(u)du.$$