
MATH 3210 – MIDTERM #2

Your Name

• You have 50 minutes to do this exam.
• No calculators or notes!
• For justifications, please use complete sentences and make sure to explain any steps which

are questionable.
• Good luck!

Problem Total Points Score

1 24

2 26

3 25

4 25

Total 100
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1. Short answer questions (3 points each).

(a) State the second fundamental theorem of calculus.

Solution: Suppose that f : [a, b] −→ R is integrable, then the function F (x) =
∫ x
a f(t)dt is

continuous and furthermore that F is differentiable with F ′(x) = f(x) if f is continuous at x.

(b) Precisely define what it means for a series
∑∞

k=1 ak to converge.

Solution: It means that the sequence of partial sums
∑n

k=1 ak converges.

(c) Compute lim
x−→0−

cos(x)− 1

ln(x)− x
if it exists. If it does not exist, say that.

Solution: It doesn’t exist, ln(x) isn’t defined for negative x.

(d) Precisely define the function ln(x) using a definite integral where x is one of the bounds.

Solution: ln(x) =
∫ x
1

1
t dt.

(e) Identify the critical points of the function f : [−2π, 2π] −→ R defined by f(x) = sin(|x− 1|).

Solution: The end points are critical points. x = ±2π. The function is also not differentiable
at x = 1, so that is a critical point. Finally, the function has zero derivative at x = 1 − 3π/2, 1 −
π/2, 1 + π/2, 1 + 3π/2.

(f) Give a precise definition of the statement lim
x−→−∞

f(x) = L.

Solution: It means that for every ε > 0, there exists a K ∈ R, so that if x < K then |x−L| < ε

(g) Consider f : [−1, 2] −→ R defined by f(x) = x2. Let P = {−1, 0, 1, 2}. Compute L(f, P ).

Solution: We have m0 = 0 (the min of x2 on [−1, 0] is 0), m1 = 0 and m2 = 1. Hence
L(f, P ) = 0 + 0 + 1.

(h) Suppose that P ⊆ Q is a refinement of partitions of the interval [0, 1]. Consider the function

f(x) = ln(2 + cos(ex))−
√
x2 + 1

x2+1
. Arrange the following values from smallest to largest.

U(f, P ), U(f,Q), L(f, P ), L(f,Q),

∫ 1

0
f(x)dx.

Solution: L(f, P ) ≤ L(f,Q) ≤
∫ 1
0 f(x)dx ≤ U(f,Q) ≤ U(f, P )
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2. Consider the function f : (−1,∞) −→ R defined by

f(x) =

∫ ln(x+e)

−x
(2t)et

2
dt.

(a) Compute f ′(x). (16 points)

Solution: We break this up into two integrals,
∫ ln(x+1)
0 (2t)et

2
dt and

∫ 0
−x(2t)et

2
dt. Using the

chain rule, we get for the first integral

(2 ln(x+ e))e(ln(x+e))2 1

x+ e
.

For the second (switching the integrals, and doing the chain rule, and plugging in −x), we get

(−1)(−1)(−1)2xex
2
.

Summing this we get

(2 ln(x+ e))e(ln(x+e))2 1

x+ e
− 2xex

2
.

(b) Verify that f(0) = e− 1. (4 points)

Hint: Use u substitution if you can’t eyeball an anti-derivative.

Solution: An anti-derivative is et
2
, so we have that the integral is

∫ 1
0 (2t)et

2
dt = e1

2 − e0 = e− 1.

(c) Compute (f−1)′(e− 1). (6 points)

Solution: Since f(0) = e− 1, we certainly have that f−1(e− 1) = 0 (it could be based on what
we know that f(y) = e− 1 for some other y, but lets not worry about that, it doesn’t happen near 0
anyways.) Thus (f−1)′(e− 1) = 1

f ′(f−1(e−1)) = 1
f ′(0) . A quick computation show that f ′(0) = 2, thus

the answer is 1/2.
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3. Suppose that (a, b) ⊆ R is a non-empty open interval and that we have a differentiable function
f : (a, b) −→ R such that f ′(x) < 0 for all x ∈ (a, b). Use the Mean Value Theorem to prove that f
is strictly decreasing. (25 points)

Solution: Choose x < y with x, y ∈ (a, b). Then there exists c ∈ (x, y) such that f ′(c) =
f(y)−f(x)

y−x . Since f ′(c) < 0, by clearing denominators we see that f(y)− f(x) < 0. Thus f(y) < f(x)

and so f is strictly decreasing.
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4. Prove the following theorem.

Theorem. Suppose a < b are real numbers. Suppose f : [a, b] −→ R is continuous. Prove that∫ b

a
f(x)dx

exists (in other words, that f is integrable on [a, b]).

Hint: Break up [a, b] into n equal subintervals where n is small enough so that you can force Mk

and mk close really close to each other by uniform continuity.

Solution: Fix ε > 0. We will show that U(f, P )−L(f, P ) < ε for some partition P . First, since
f is continuous on [a, b], it is uniformly continuous, so there exists δ > 0 so that if |x − y| < δ for
some x, y ∈ [a, b], then |f(x)− f(y)| < ε/(b− a). Now, create a partition P by dividing [a, b] into m
equal subintervals of length less than δ. Thus on each interval, [xk−1, xk], we have by the extreme
value theorem since f is continuous, that f([xk, xk+1]) has a maximum Mk = f(yk) and a minimum
mk = f(zk), with yk, zk ∈ [xk−1, xk]. By construction, |Mk − mk| = |f(yk) − f(zk)| < ε/(b − a).
Therefore,

U(f, P )− L(f, P ) =

m∑
k=1

(Mk −mk)
b− a
m

< m · ε

b− a
· b− a
m

= ε,

as desired.
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(EC) Suppose h : [a, b) −→ R is a continuous function which is differentiable on (a, b) and where
lim

x−→b−
h(x) =∞. Suppose further that h([a, b)) = [c,∞). Suppose that f : [c,∞) −→ R is integrable

on every closed interval [c, r] ⊆ [c,∞). Define a new function L : [a, b] −→ R by

L(t) =

{
f(h(t))h′(t), t ∈ [a, b)
7, t = b

and suppose it is integrable on [a, b]. Prove that∫ ∞
h(a)

f(x)dx =

∫ b

a
L(t)dt.

In particular, show that the improper integral on the left exists.

Solution: L is also integrable on each [a, r] for r < b. Hence consider the function H(x) =∫ x
a L(t)dt. We know from the fundamental theorem of calculus part II that H(x) is continuous on

[a, b] so that limx−→bH(x) = H(b) . Note H(x) =
∫ h(x)
h(a) f(u)du by u-substitution. Therefore∫ b

a
L(t)dt = H(b) = lim

x−→b

∫ h(x)

h(a)
f(u)du =

∫ ∞
h(a)

f(u)du.
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