
MATH 3210 – MIDTERM #1 SOLUTIONS

1. Short answer questions (3 points each).

(a) What is the completeness axiom of the real numbers? (As we defined it in class).

Solution: Every bounded above set of real numbers has a least upper bound.

(b) Give a precise definition about what it means for a sequence {an} to converge to +∞.

Solution: For every real number K, there exists a real number N > 0 so that if n > N , then
an > K.

(c) Give an example of a bounded function f : R −→ R that is not continuous.

Solution: f(x) =

{
1 x ≥ 0

0x < 0

(d) Precisely define what it means for a sequence of functions {fn : D −→ R} to be uniformly
convergent to a function f : D −→ R.

Solution: It means for every ε > 0 there exists an N > 0 so that if n > N , we have that
|fn(x)− f(x)| < ε for all x ∈ D.

(e) Give an example of a domain D and a function g : D −→ R so that g is not uniformly continuous.

Solution: You can take D = R and g(x) = x2. Or you can take D = (0,∞) and g(x) = 1/x.
Many other things work too.

(f) What does the Bolzano-Weierstrass theorem say?

Solution: It says that every bounded sequence of real numbers has a convergent subsequence.

(g) Give an example of a monotone sequence that is not convergent.

Solution: an = n.

(h) Suppose that {an} is a sequence such that lim an = 11. Compute lim sup(ann ).

Solution: The answer is zero. In fact, lim an
n = 0 since an converges to a finite limit and the

denominator n converges to ∞.
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2. Consider the function f(x) = x3 + 1. Prove directly from the definition that f(x) is continuous
at a = 2.

(26 points) Hint: You may use that u3 − v3 = (u− v)(u2 + uv + v2).

Solution: Note first that f(a) = 23+1 = 9. Choose ε > 0 and set δ = min(1, ε/19). Suppose that
|x−a| = |x−2| < δ. Then since δ ≤ 1, we have x ∈ (1, 3). We see that then x2+2x+4 < 9+6+4 = 19
for such x. We have

|f(x)− 9| = |x3 + 1− 9| = |x3 − 8| = |x− 2| · |x2 + 2x+ 4| < |x− 2| · 19 < δ · 19 ≤ (ε/19) · 19 = ε.

This completes the proof.

3. Suppose that {an} and {bn} are two convergent sequences that both converge to the same L ∈ R.
Define a new sequence cn as follows:

cn =

{
an if n is odd
bn if n is even

In other words {cn} is the sequence

{a1, b2, a3, b4, a5, b6, a7, b8, . . . }.
Prove that cn also converges to L. (25 points)

Solution: Choose ε > 0. Since an −→ L, there exists an N1 so that if n > N1, then |an − L| < ε
for n > N1. Since bn −→ L there exists an N2 so that if n > N2, then |bn − L|ε. Now pick
N = max(N1, N2) and suppose that n > N so that n > N1 and n > N2.

Consider |cn − L|. If n is odd, then |cn − L| = |an − L| < ε. On the other hand if n is even then
|cn − L| = |bn − L| < ε. In either case, |cn − L| < ε and the proof is complete.

4. Suppose that I is a closed and bounded interval and that f : I −→ R is a continuous function.
Prove that f is uniformly continuous. (25 points)

Solution: See the text.

(EC) Consider a closed and bounded interval I = [a, b]. We make the following definition.

Definition. An open cover by intervals of I is a set of open intervals Ut ⊆ R so that I ⊆
⋃

t Ut.

Now suppose that {Ut} is open cover by intervals of I and that there are infinitely many Ut. Prove
that there is a finite collection Ut1 , . . . , Utn of open intervals from our cover so that

I ⊆ Ut1 ∪ · · · ∪ Utn . (10 points)

This is called showing that I has a finite subcover.

Hint: Consider the set S of c ∈ [a, b] = I such that [a, c] has a finite subcover among the {Ut}.
Take the supremum of S, show it must equal b and think about what this says about [a, b).

Solution: First note that the set S is nonempty since [a, a] has a finite subcover (take any Ut

containing a). Thus a ∈ S. Following the hint, let s = supS. Since S ⊆ [a, b], s = supS ≤ sup[a, b] =
b and so s ∈ [a, b] (since s is an upper bound for a ∈ S). Thus there exists some Ut = (ut, vt) in
our cover containing s. Since ut < s, by the definition of supremum there exists some interval [a, c]
with ut < c < s with [a, c] having a finite subcover {Ut1 , . . . , Utn}. Then {Ut, Ut1 , . . . , Utn} is a finite
subcover of [a, s], and so if s = b we are done. Furthermore, if s < b let v = min((vt + s)/2, b), then
{Ut, Ut1 , . . . , Utn} is a finite subcover of [a, v]. If v = b we are done. If v < b, then v = (s+ vt)/2 ∈ S
which contradicts the fact that s = supS since vt > s and so (vt + s)/2 > s.
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