WORKSHEET #5 - MATH 311W

OCTOBER 24TH, 2012 DUE MONDAY, OCTOBER 29TH

We will study relations. First we recall some terminology. Fix a relation \sim on a set X. The elements x, y, z are elements of X.

- (a) ~ is called *reflexive* if $x \sim x$ for all $x \in X$.
- (b) ~ is called *symmetric* if whenever $x \sim y$ then $y \sim x$.
- (c) ~ is called *transitive* if whenever $x \sim y$ and $y \sim z$ then $x \sim z$.
- (d) ~ is called *antisymmetric* if whenever $x \sim y$ then $y \not\sim x$.
- (e) ~ is called *weakly antisymmetric* if whenever $x \sim y$ and $y \sim x$ then x = y. (Many references call this "antisymmetric")
- (f) ~ is called *total* if for any $x, y \in X$ we have either $x \sim y$ or $y \sim x$ (or both).

A relation is called a *partial order* if it satisfies (a) reflexive, (c) transitive and (e) weakly antisymmetric. A relation is called a *strict partial order* if it is (d) antisymmetric and (c) transitive. Finally, a relation is called a *total order* if it is (c) transitive, (e) weakly antisymmetric, and (f) total.

1. Consider the empty relation $\sim = \emptyset$ on X. Which of the properties (a)-(e) are satisfied. Is it a partial order or a strict partial order or neither?

Solution: It is not reflexive (unless $X = \emptyset$ too) since nothing is related to anything. It is symmetric since $x \sim y$ never happens (think unicorns). Likewise it is transitive and antisymmetric and weakly antisymmetry. It is not total (as long as X is not empty).

2. Same question as **1.** but now assume that $\sim = X \times X$.

Solution: Everything is related to everything, so it is reflexive. It is also symmetric, transitive. It is definitely not antisymmetric or weakly antisymmetric (unless X is very small) but it is definitely total.

3. Prove that every antisymmetric relation is weakly antisymmetric.

Solution: Since $x \sim y$ and $y \sim x$ never happens, it is weakly antisymmetric.

4. Consider $X = \mathbb{Z}$. Write $x \sim y$ if x|y. What properties (a) – (f) does this satisfy? Is it a partial, strict partial, or total order?

Solution: Since x divides itself, it is reflexive. It's not symmetric though. It is transitive since if x|y and y|z then x|z certainly. It's not antisymmetric. Furthermore, it is not weakly anti symmetric because -7|7 and 7|-7 but $7 \neq -7$ (if I had chosen $X = \mathbb{Z}_{\geq 0}$, it would have been weakly antisymmetric). It's not total since 7 does not divide 3 and 3 does not divide 7.

5. Let $X = \mathbb{R} \times \mathbb{R}$. Define a relation on X by saying that $(a, b) \sim (c, d)$ if $a \ge c$ and $b \ge d$. Prove that \sim is a partial order but not a total order.

Solution: Certainly $(a, b) \sim (a, b)$ since $a \leq a$ and $b \geq b$. Therefore the relation is reflexive. Suppose now that $(a, b) \sim (c, d)$ and $(c, d) \sim (e, f)$. Thus $a \geq c$ and $b \geq d$ and also $c \geq e$ and $d \geq f$. Therefore $a \geq e$ and $b \geq f$. Thus $(a, b) \sim (e, f)$ and so the relation is transitive. Finally, suppose both that $(a, b) \sim (c, d)$ and $(c, d) \sim (a, b)$. Thus $a \geq c$ and $c \geq a$ so a = c. Likewise b = d. Thus (a, b) = (c, d) and so \sim is a partial order.

To prove it is not total consider the two elements (0, 2) and (3, 1). Note that $(0, 2) \not\sim (3, 1)$ since 0 < 3 and also that $(3, 1) \not\sim (0, 2)$ since 1 < 2.