
WORKSHEET #2 – MATH 311W

SEPTEMBER 17TH, 2012

Suppose that a, b ∈ Z and n ∈ Z>0. Recall that we write a ≡n b (or a ≡ b modulo n) if n|(a− b).
In this worksheet, we’ll explore this relation in more detail.

1. Suppose a ≡n b and c ∈ Z. Prove that

(a) a + c ≡n b + c.
(b) a− c ≡n b− c.
(c) a · c ≡n b · c.

Solution: For (a), we know n|(a− b). But a− b = (a+ c)− (b+ c) so n|((a+ c)− (b+ c)) and the
result follows.

For (b), again we know n|(a− b) and so then n|((a− c)− (b− c)) and the result follows.
Finally for (c), since n|(a− b), then certainly n|(c(a− b)) but thus n|(c · a− c · b) and the result

follows.

2. Division doesn’t even make sense of course, because 1/5 isn’t an integer. However, we can
ask a more fundamental question. Given an equation a · x ≡n b, does there exist an integer x that
solves the equation? Find all solutions to the following equations or show that there is no solution.

(a) 2x ≡4 1.
(b) 2x ≡4 0.
(c) 2x ≡5 1.
(d) 3x ≡5 2.
(e) x2 ≡4 3.

Solution: For (a), there are no solutions. For this, based on the theorem in the book we simply
must observe that 2 = gcd(2, 4) can never divide 1 since this latter integer is odd.

For (b), certainly x = 2 is a solution. In fact, any even integer is a solution since if x = 2k, then
2 · (2k) = 4k ≡4 0. Odd x do not yield solutions though.

For (c), there is a solution again if and only if 1 = gcd(2, 5) divides 1, but this always happens,
so there is a solution. Since 2 is invertible modulo 5, and [2]−1 = 3, we see that x is a solution to
2x ≡5 1 if and only if x = 3 · 2 · x ≡5 3. Thus the solutions are {. . . ,−2, 3, 8, 13, 18, . . .}.

For (d), we work as above. We see that x is a solution to 3x ≡5 2 if and only if x = 2·3x ≡5 2·2 = 4
(again, this is reversible since 2 is invertible). Thus the solutions are {. . . ,−1, 4, 9, 14, 19, . . .}.

For (e), it’s a little more complicated. There are no solutions and here’s how you see it. If x
is even, then x = 2k so that x2 = 4k2 ≡4 0 and so can’t be 3. On the other hand, if x is odd,
x = 2k + 1, then x2 = 4k2 + 4k + 1 ≡4 1 which is also not 3, so no matter what x is, x2 can’t be
equivalent to 3 modulo 4.
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Now we move onto a harder topic. The equivalence class of a modulo n, denoted [a]n is defined
to be the set {x|x ≡n a}.
3. Prove that if y, z ∈ [a]n then y ≡n z and also that [y]n = [a]n = [z]n. In this case, we say that
x, y and a are all representatives of the same equivalence class.

Solution: For the first part, we observe that [y]n is everything with the same remainder as y
(when divided by n). Likewise [z]n is everything with the same remainder as z (when divided by
n). But y and z and a all have the same remainder, and so y ≡n z and also [y]n = [a]n = [z]n as
desired.

4. Show that every equivalence class [a]n has a representative r (in other words, such that [r]n =
[a]n) satisfying the property 0 ≤ r < n.

Solution: Write a = qn + r with 0 ≤ r < n. Then r ≡n a since n divides qn = a− r. Thus we
have found our r.

For any two equivalence classes [a]n and [b]n, we DEFINE the following addition and multipli-
cation operations.

(†) [a]n + [b]n = [a + b]n and [a]n · [b]n = [a · b]n
We need to prove that these operations are well defined. This means that they do not depend on
the choice of representative of the equivalence class. For example, consider the following function
which is not well defined

f(x) = “3rd digit in the decimal expansion of x”.

Since 1.0 = 0.999 . . ., we have that both f(x) = 0 and f(x) = 9. This is impossible, so our original
f was not even a function. We need to worry about a similar thing here.

5. Show that the operations + and · are well defined on equivalence classes by doing the following.
Suppose that [b]n = [c]n. Prove that (†) is well defined by proving that

[a]n + [c]n = [a]n + [b]n

and likewise with multiplication. Note, you CANNOT cancel the [a]n from both sides (yet). The
“+” operation above is not the ordinary addition of numbers, it is addition of equivalence classes
as defined in (†).

Solution: We need to show that [a + c]n = [a]n + [c]n is equal to [a + b]n = [a]n + [b]n. It is
sufficient to show that n|((a+b)−(a+c)) but this follows immediately since (a+c)−(a+b) = c−b
and we know n|(c− b) since [b]n = [c]n. This proves the result for “+”.

For multiplication, we need to show that [a]n · [c]n = [a · c]n is equal to [a]n · [b]n = [a · b]n. Thus
we need to show that n divides ac− ab = a(c− b). But we already know that n divides c− b (since
[c]n = [b]n) and thus n divides ac− ab as well. This completes the proof.


