WORKSHEET #2 - MATH 311W

SEPTEMBER 17TH, 2012

Suppose that $a, b \in \mathbb{Z}$ and $n \in \mathbb{Z}_{>0}$. Recall that we write $a \equiv_n b$ (or $a \equiv b$ modulo n) if n|(a-b). In this worksheet, we'll explore this *relation* in more detail.

- **1.** Suppose $a \equiv_n b$ and $c \in \mathbb{Z}$. Prove that
 - (a) $a + c \equiv_n b + c$.
 - (b) $a-c \equiv_n b-c$.
 - (c) $a \cdot c \equiv_n b \cdot c$.

Solution: For (a), we know n|(a-b). But a-b = (a+c) - (b+c) so n|((a+c) - (b+c)) and the result follows.

For (b), again we know n|(a-b) and so then n|((a-c)-(b-c)) and the result follows.

Finally for (c), since n|(a-b), then certainly n|(c(a-b)) but thus $n|(c \cdot a - c \cdot b)$ and the result follows.

2. Division doesn't even make sense of course, because 1/5 isn't an integer. However, we can ask a more fundamental question. Given an equation $a \cdot x \equiv_n b$, does there exist an integer x that solves the equation? Find *all* solutions to the following equations or show that there is no solution.

- (a) $2x \equiv_4 1$.
- (b) $2x \equiv_4 0$.
- (c) $2x \equiv_5 1$.
- (d) $3x \equiv_5 2$.
- (e) $x^2 \equiv_4 3$.

Solution: For (a), there are no solutions. For this, based on the theorem in the book we simply must observe that $2 = \gcd(2, 4)$ can never divide 1 since this latter integer is odd.

For (b), certainly x = 2 is a solution. In fact, any even integer is a solution since if x = 2k, then $2 \cdot (2k) = 4k \equiv_4 0$. Odd x do not yield solutions though.

For (c), there is a solution again if and only if $1 = \gcd(2, 5)$ divides 1, but this always happens, so there is a solution. Since 2 is invertible modulo 5, and $[2]^{-1} = 3$, we see that x is a solution to $2x \equiv_5 1$ if and only if $x = 3 \cdot 2 \cdot x \equiv_5 3$. Thus the solutions are $\{\ldots, -2, 3, 8, 13, 18, \ldots\}$.

For (d), we work as above. We see that x is a solution to $3x \equiv_5 2$ if and only if $x = 2 \cdot 3x \equiv_5 2 \cdot 2 = 4$ (again, this is reversible since 2 is invertible). Thus the solutions are $\{\ldots, -1, 4, 9, 14, 19, \ldots\}$.

For (e), it's a little more complicated. There are no solutions and here's how you see it. If x is even, then x = 2k so that $x^2 = 4k^2 \equiv_4 0$ and so can't be 3. On the other hand, if x is odd, x = 2k + 1, then $x^2 = 4k^2 + 4k + 1 \equiv_4 1$ which is also not 3, so no matter what x is, x^2 can't be equivalent to 3 modulo 4.

Now we move onto a harder topic. The equivalence class of a modulo n, denoted $[a]_n$ is defined to be the set $\{x | x \equiv_n a\}$.

3. Prove that if $y, z \in [a]_n$ then $y \equiv_n z$ and also that $[y]_n = [a]_n = [z]_n$. In this case, we say that x, y and a are all representatives of the same equivalence class.

Solution: For the first part, we observe that $[y]_n$ is everything with the same remainder as y (when divided by n). Likewise $[z]_n$ is everything with the same remainder as z (when divided by n). But y and z and a all have the same remainder, and so $y \equiv_n z$ and also $[y]_n = [a]_n = [z]_n$ as desired.

4. Show that every equivalence class $[a]_n$ has a representative r (in other words, such that $[r]_n = [a]_n$) satisfying the property $0 \le r < n$.

Solution: Write a = qn + r with $0 \le r < n$. Then $r \equiv_n a$ since n divides qn = a - r. Thus we have found our r.

For any two equivalence classes $[a]_n$ and $[b]_n$, we *DEFINE* the following addition and multiplication operations.

(†)
$$[a]_n + [b]_n = [a+b]_n \text{ and } [a]_n \cdot [b]_n = [a \cdot b]_n$$

We need to prove that these operations are *well defined*. This means that they do not depend on the choice of representative of the equivalence class. For example, consider the following function which is not well defined

f(x) = "3rd digit in the decimal expansion of x".

Since 1.0 = 0.999..., we have that both f(x) = 0 and f(x) = 9. This is impossible, so our original f was not even a function. We *need* to worry about a similar thing here.

5. Show that the operations + and \cdot are well defined on equivalence classes by doing the following. Suppose that $[b]_n = [c]_n$. Prove that (\dagger) is well defined by proving that

$$[a]_n + [c]_n = [a]_n + [b]_r$$

and likewise with multiplication. Note, you CANNOT cancel the $[a]_n$ from both sides (yet). The "+" operation above is not the ordinary addition of numbers, it is addition of equivalence classes as defined in (†).

Solution: We need to show that $[a + c]_n = [a]_n + [c]_n$ is equal to $[a + b]_n = [a]_n + [b]_n$. It is sufficient to show that n|((a+b)-(a+c)) but this follows immediately since (a+c)-(a+b)=c-b and we know n|(c-b) since $[b]_n = [c]_n$. This proves the result for "+".

For multiplication, we need to show that $[a]_n \cdot [c]_n = [a \cdot c]_n$ is equal to $[a]_n \cdot [b]_n = [a \cdot b]_n$. Thus we need to show that n divides ac - ab = a(c - b). But we already know that n divides c - b (since $[c]_n = [b]_n$) and thus n divides ac - ab as well. This completes the proof.