QUIZ #2 - MATH 311W

SEPTEMBER 24TH, 2012

1. Compute the inverses of the following equivalence classes or say that the inverse does not exist. Show your work and write clearly. (3 points)

- (a) $[2]_7$
- (b) $[6]_{10}$
- (c) $[1]_2$

Solution: I just eye-balled these.

(a) $([2]_7)^{-1} = [4]_7$ since $2 \cdot 4 = 8 \equiv_7 = 1$. (b) $([6]_10)^{-1}$ does not exist, this is because $gcd(6, 10) = 2 \neq 1$. (c) $([1]_2)^{-1} = [1]_2$ since $1 \cdot 1 = 1$.

3. Give an example of equation $ax \equiv_n b$ which has no solution. I want explicit values of a, b and n. (1 point)

Solution: There are many solutions, but consider n = 2, a = 2, b = 1. Then $2 \cdot x \equiv_2 1$ has no solutions since gcd(2,2) = 2 does not divide b = 1. Alternately, $2 \cdot x$ is always even, so is equivalent to 0 modulo 2, but 1 is not.

2. Suppose that $x \equiv_m 0$ and $y \equiv_m 0$. Prove that $m | \gcd(x, y)$. (2 points)

Solution: Since $x \equiv_m 0$ we know that m|(x-0) and so m|x. Likewise m|y. But then $m|\gcd(x,y)$ since $\gcd(x,y)$ is a multiple of every divisor dividing x and y also divides $\gcd(x,y)$ (see the original definition of \gcd in the text).