WORKSHEET #6 - MATH 2200 SPRING 2018

NOT WEDNESDAY

This should help you prepare for the midterm.

1. Short answer questions.

(a) Define what it means for a function $f: A \to B$ to be injective.

(b) Is it true that there is a solution to $3x \equiv_9 1$?

(c) What is the definition of the gcd(a, b)?

(d) State Fermat's little theorem.

(e) Suppose that [a] and [b] are two distinct equivalence classes of an equivalence relation \sim . Is it possible that $a \sim b$?

(f) Consider the function $f(x) = 3x^3 + 2^x$. True or false, f(x) is $O(x^3)$?

(g) Consider the system of congruences $x \equiv_{11} 7$ and $x \equiv_{13} 3$. How many solutions does this system have between 0 and $142 = 11 \cdot 13 - 1$?

(h) What's the smallest prime integer bigger than 100?

(i) Define what it means that a relation is an equivalence relation.

(j) Do an insertion sort, showing all the steps, on the integers $\{3, 0, 5, -1\}$.

(k) Write the number 23 in base 6.

(1) Rewrite the base 5 integer $(401)_5$ as an integer in base 10.

(m) At most how many comparisons does a binary search do on a list of length n (you may use big O notation).

(n) If φ is the Euler phi function, what is $\varphi(45)$?

2. Run the extended Euclidean algorithm on the integers 121 and 77 and use it to find integers s and t such that $s \cdot 121 + t \cdot 77 = 11$. Make sure to explain each step.

3. Solve the system of congruences

$$2x \equiv_5 3$$
$$x \equiv_3 5$$
$$3x \equiv_4 0$$

4. Describe an algorithm that determines if a function $f : \{1, 2, 3, 4, 5\} \rightarrow \{6, 7, 8, 9\}$ is surjective. You may use pseudo-code or sentences.

5. Describe an algorithm that computes $\varphi(n)$ where the input *n* is an integer. How many times does it run the Euclidean Algorithm? (You may assume you already have a different function that has implemented the Euclidean Algorithm).

6. Fix an integer n > 0. Write $a \equiv_n b$ (for integers a and b) if n|(a - b). Prove carefully that \equiv_n is an equivalence relation.

7. Consider the set $S = \mathbb{Z} \times \mathbb{Z}$ (the set of ordered pairs of two integers). We define an relation ~ on S by declaring $(a, b) \sim (c, d)$ if $a^2 + b^2 = c^2 + d^2$.

- (a) Prove that \sim is an equivalence relation.
- (b) Compute $|[(1,0)]_{\sim}|$ (the size of the equivalence class of (1,0)).