WORKSHEET #4 – MATH 2200 SPRING 2018

DUE FRIDAY, MARCH 16TH

You may work in groups of up to 4 people. Only one assignment needs to be turned in per group, but make sure everyone's name is on it.

The first part of this worksheet will describe the *extended* Euclidean algorithm. In other words, given integers a, b, at least one nonzero, this finds integers s and t so that

$$sa + tb = \gcd(a, b)$$

1. Suppose that a = b. What s and t can you pick so that

$$sa + tb = \gcd(a, b)$$
?

Solution: Since the gcd = a = b, you can pick s = 1 and t = 0, or many other things (s = -3, t = 4...)

2. Suppose that $b \mid a$. What s and t can you pick so that

 $sa + tb = \gcd(a, b)$?

Solution: Since the gcd = b, you can choose s = 0, t = 1.

Recall that when doing the Euclidean Algorithm, we repeatedly use the fact that if a = bq + r, then gcd(a, b) = gcd(b, r).

3. With notation as above, suppose we already found integers s', t' so that s'b + t'r = gcd(b, r). Derive formulas for s and t so that sa + tb = gcd(a, b).

s =

t =

Solution: We have two equations a = bq + r and s'b + t'r = gcd(b, r). Solving the first equation for r we get r = a - bq. Plugging this into the second equation we get

$$gcd(b, r) = s'b + t'(a - bq) = t'a + (s' - t'q)b.$$

But gcd(a, b) = gcd(b, r) and so we can take s = t' and t = s' - t'q.

4. Compute gcd of 675 and 210 by running the Euclidean Algorithm. In this problem, fill in the columns labeled a, b and then fill in the gcd column. I've even done the first line for you. In particular I computed $675 = 3 \cdot 210 + 45$. Note you are going to fill out the first two columns before you figure out the gcd. Ignore the s, t column for now.

	a	b	$\gcd(a,b)$	s	t	check
q = 3	675	210	15	5	$-16 = (-1) - (5 \cdot 3)$	✓
q = 4	210	45	15	-1	$5 = 1 - (-1 \cdot 4)$	✓
q = 1	45	30	15	1	$-1 = 0 - (1 \cdot 1)$	✓
q = 2	30	15	15	0	1	✓

Solution: Filled in above

5. Starting at the bottom line in the above table, find s and t so that sa + tb is the gcd. Fill out the s and t in the table. Make sure to use your formulas from 3. to find the s and t based on the values of the previous line. Check your work at each step (to make sure the s and t give you the gcd) and put a checkmark in the corresponding column when you have done so.

Solution: One solution is filled in above. Notice that if you start in the s and t line with a different pair of values, the s and t at the top will be different.

6. Use any method you like (guess and check is ok) to find s and t so that sa + tb = gcd(a, b) for the given values of a and b.

(iii) 15, 49 (iv) 10, 37

Solution: For (i), one set of valid values is s = 3, t = -2 since $(3 \cdot 5) + ((-2) \cdot 7) = 1$. For (ii), one set of valid values is s = -7, t = 4 since $((-7) \cdot 9) + (4 \cdot 16) = 1$. For (iii) one set of valid values is s = -13, t = 4 since $((-13) \cdot 15) + (4 \cdot 49) = 1$. For (iv), one set of values values is s = 26, t = -7 since $(26 \cdot 10) + (7 \cdot 37) = 1$. 7. Write down a careful proof that if sa + tb = 1, then $sa \equiv_b 1$ (remember, \equiv_b means equivalent mod b). The number s is called an *inverse of a mod b*.

Solution: Suppose sa + tb = 1. Note that $(sa + tb) \equiv_b sa + 0 = sa$ using a result from the text in Section 4.1 (it is also correct to argue that tb has zero remainder modulo b and so sa + tb has the same remainder as sa). Hence

$$1 \equiv_b sa + tb \equiv_b sa.$$

This completes the proof.

8. Compute the inverses of the following integers $a \mod b$. Check your answer carefully in each case. (*Hint:* Don't forget the work you did in **5.**)

(i)
$$a = 5, b = 7$$
 (ii) $a = 9, b = 16$

(iii) a = 15, b = 49 (iv) a = 10, b = 37Solution: For (i), $s = 3 \equiv_7 -4$. For (ii), $s = -7 \equiv_{16} 9$. For (iii) $s = -13 \equiv_{49} 36$. For (iv) $s = 26 \equiv_{37} -11$.

9. Solve the following congruences for x using what you did in **8.**

(i)
$$5x \equiv_7 4$$
 (ii) $5x \equiv_{16} 3 - 4x$

(iii)
$$15x \equiv_{49} -1$$
 (iv) $-9x \equiv_{37} 1 + x$

Solution: For the (i), multiplying both sides by 3 we get $x \equiv_7 12 \equiv_7 5$.

For the (ii), moving the xs to the same side, we get that $9x \equiv_{16} 3$. Multiplying both sides by -7 we get $x \equiv_{16} -21 \equiv_{16} -5 \equiv_{16} 11$.

For (iii), multiplying both sides by (-13) we get $x \equiv_{49} 13$.

For (iv), we first move the xs to the same side to obtain that $-1 \equiv_{37} 10x$. Multiplying both sides by (-11) we obtain that $11 \equiv_{37} = x$.