QUIZ #6 – MATH 2200 SPRING 2018

APRIL 20TH, 2018

1. Show that $3n + 5 \le 2^n$ for all $n \ge 5$ using induction. (10 points)

Solution: Let P(n) be the statement that $3n + 5 \le 2^n$. We begin with the base case of n = 5. Notice that $3n + 5 = 20 \le 32 = 2^5$. Now for the induction step. Suppose that $3k + 5 \le 2^k$ with $k \ge 5$. Then

$$3(k+1) + 5 = 3k + 5 + 3 \le 2^k + 3.$$

We need to show that $2^k + 3 \le 2^{k+1} = 2 \cdot 2^k$. To do this notice that since $k \ge 5$, we have $3 \le 32 \le 2^k$. Then

$$2^k + 3 \le 2^k + 2^k = 2 \cdot 2^k = 2^{k+1}.$$

Putting these two strings of inequalities together we get $3(k+1) + 5 \le 2^{k+1}$ which shows that P(k) implies P(k+1) and hence P(n) holds for all $n \ge 5$.

2. Let P(n) be the statement that a postage of n cents can be formed using 4-cent and 5-cent stamps. Show that P(n) is true for every $n \ge 12$ by using strong induction. (10 points)

Solution: First we do our base cases. P(12) is true because 4+4+4=12. P(13) is true because 4+4+5=13. P(14) is true because 4+5+5=14. Finally, P(15) is true because 5+5+5=15. Now suppose that $P(12), P(13), \ldots, P(k)$ are all true for some $k \ge 15$. We will show that P(k+1) is true. Note that $k+1 \ge 16$ since $k \ge 15$. Hence $k+1-4=k-3 \ge 12$ and so P(k+1-4) is true. In other words, we can write $k+1-4=a \cdot 4+b \cdot 5$. Now then,

$$k+1 = k+1-4+4 = (a+1) \cdot 4 + b \cdot 5.$$

It follows that k + 1 can be obtained via a sum of 4 and 5 cent stamps.