QUIZ #4 – MATH 2200 SPRING 2018

MARCH 9TH, 2018

1. Suppose that $n \mid m$ where $n, m \in \mathbb{Z}_{>0}$. Suppose also that $a \equiv b \pmod{m}$. Prove that

$$a \equiv b \,(\mathrm{mod}\,n).$$

(10 points)

Solution: Since $a \equiv_m b$, we know m|(a - b). Since n|m, we conclude that n|(a - b). Thus by definition $a \equiv_n b$.

2. Use the Euclidean Algorithm to find gcd(1001, 1331). Write out all your steps logically and carefully. (10 points)

Solution: We first write

 $1331 = 1001 \cdot 1 + 330$

and so we must compute gcd(1001, 330). Next we write

 $1001 = 330 \cdot 3 + 11$

and so we must compute gcd(330, 11). But 11 is a factor of 330 so that the gcd is 11. In conclusion gcd(1001, 1331) = gcd(1001, 330) = gcd(330, 11) = 11.