QUIZ #3 – MATH 2200 SPRING 2018

FEBRUARY 23RD, 2018

1. Let $S = \mathbb{R}_{>0}$ and let $T = \{n^2 \mid n \in \mathbb{Z}_{>0}\}.$

(a) Is S finite, countably infinite or uncountable?

(b) Is T finite, countably infinite or uncountable?

(c) Is S - T finite, countably infinite or uncountable?

(d) Is T - S finite, countably infinite or uncountable?

You don't need to justify your answer, but it might be helpful to recall the following facts that we proved in the worksheet on countability.

- (i) If A and B are countably infinite sets, then so is $A \cup B$.
- (ii) If A and B are countably infinite sets, then so is $A \times B$.
- (iii) If A is uncountable and $B \subseteq A$ is countably infinite, then A B is uncountable.
- (iv) If A and B are uncountable, it is possible that A B is finite, or countably infinite, or uncountable (it just depends on what the sets are).
- (v) For any set S, $|S| \neq |\mathcal{P}(S)|$.

Solution:

- (a) uncountable
- (b) countably infinite
- (c) uncountable
- (d) finite (in fact empty)

2. Let $S = \mathbb{R}$. We define a relation on \mathbb{Q} as follows. $a \sim b$ if and only if a + b = 0. Is ~ symmetric, transitive, or reflexive? Make sure to justify your answer with a proof (if it is) or with a counter-example (if not).

Solution: symmetric It is symmetric. Indeed, suppose that $a \sim b$, then a + b = 0, so that b + a = 0 and thus $b \sim a$ as claimed.

transitive It is not transitive. Note that $1 \sim -1$ and $-1 \sim 1$ but 1 is not related to 1. **reflexive** It is not reflexive. Note that 1 is not related to 1.

3. Suppose that $f : A \to B$ and $g : B \to C$ are surjective functions. Prove carefully that $g \circ f$ is also surjective.

Solution: We want to show that $g \circ f : A \to C$ is surjective. Thus fix $c \in C$, we want to find $a \in A$ so that $(g \circ f)(a) = c$. First since g is surjective, there exists some $b \in B$ so that g(b) = c. Next, since f is surjective, there is some $a \in A$ so that f(a) = b. Now consider $(g \circ f)(a)$:

$$(g \circ f)(a) = g(f(a)) = g(b) = a$$

by using what we have already written. Thus we have found our desired $a \in A$ which completes the proof.