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We’re going to apply Stokes Theorem (the book calls it Stokes Theorem and the Divergence
Theorem separately).

Let me state the theorems here for convenience.

(Stokes Theorem)

∫
C

~F · d~r =

∫∫
S

(curl~F ) · dS

Here S is an oriented piecewise-smooth surface with a simple1 closed2 boundary curve C. Remem-

ber, if we write ~F = Pdx + Qdy + Rdz as a 1-form, then this becomes
∫
C(Pdx + Qdy + Rdz) =∫∫

S d(Pdx + Qdy + Rdz).

(Divergence Theorem)

∫∫
S

~F · dS =

∫∫∫
E

div(F )dV

Here E is a simple solid region and let S be the boundary of E with outward orientation. Again,
this can be written as

∫∫
S(Pdydz + Qdzdx + Rdxdy) =

∫∫∫
E d(Pdydz + Qdzdx + Rdxdy).

For both of these theorems, standard caveats apply. In particular all the functions involved need
to have continuous partial derivatives everywhere.

1. Consider the surface S defined by z = (x2 + y2 − 1)3cos(x)y
2
, at least the part of it below the

z = 0 plane. Consider the vector field ~F = 〈1, z − 1,−y〉. Compute∫∫
S

~F · dS

by computing an integral over another surface.

1Meaning it doesn’t cross itself
2meaning it’s a loop
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3. Same problem S as in 1. Find a vector field that ~F is the curl of and then compute the surface
integral ∫∫

S

~F · dS

by this time computing a line integral (this is probably more work than in 1). Did you get the
same answer?

4. Same surface S as in 1. but now we use another vector field. A computer calculation has told
you that the volume of this region above the surface and below that z = 0 plane is 1.906086090.

Let us consider the vector field ~F = 〈2x,−2, z〉. Compute the flux integral∫∫
S

~F · dS

by computing an integral over another surface.
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5. Consider the (messy) vector field ~F = 〈2y,−x sin(ez)ez − 2x + y2, cos(x)esin(x)〉. Consider the
surface S defined by z = 1 − x2 and bounded the planes y ≤ 1, y ≥ 0, z ≥ 0. Compute the flux
integral ∫∫

S

~F · dS

by computing a triple integral and then computing a surface integral over a very simple (rectangular
and flat) surface and the showing that the integrals over two other side pieces “very nearly cancel”.

6. Given a flux integral, describe some strategies for how you might decide whether or not Stokes
Theorem or the Divergence Theorem could be applied when attacking it.
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