WORKSHEET #5 – MATH 1260 FALL 2014

NOT DUE, OCTOBER 7TH

- 1. First we begin with short answer questions.
 - (a) Are the vectors (1,2,3) and (-3,-2,-1) perpendicular?
 Solution: The dot product is not zero, so no.
 - (b) Find a vector that is perpendicular to (1,2,3).
 Solution: (-3,0,1) would work, as would (0,0,0)
 - (c) True or false, the projection of a vector onto the xy-plane is always a unit vector.Solution: False. The vector could already be on the xy-plane of any length...
 - (d) Find the area of the parallelogram defined by the vectors $\langle 1, 2 \rangle$ and $\langle -1, 3 \rangle$.

Solution: Taking the determinant yields 3 - 2(-1) = 5. So the area is 5.

(e) Find a vector \vec{w} so that if $\vec{u} = \langle 1, 0, -1 \rangle$ and $\vec{v} = \langle 0, 0, 2 \rangle$, then $\{\vec{u}, \vec{v}, \vec{w}\}$ form a *linearly dependent set*.

Solution: I take $\vec{w} = \vec{u}$ so that $\vec{w} = 1\vec{u} + 0\vec{v}$. It's now linearly dependent. You could also take $\vec{w} = \vec{u} + \vec{v}$.

- (f) Find a vector \vec{w} so that if $\vec{u} = \langle 1, 0, -1 \rangle$ and $\vec{v} = \langle 0, 0, 2 \rangle$, then $\{\vec{u}, \vec{v}, \vec{w}\}$ form a spanning set. Solution: \vec{u} and \vec{v} already span the *xz*-plane so I can add $\vec{w} = \vec{j} = \langle 0, 1, 0 \rangle$.
- (g) Setup, but do not evaluate, an integral which computes the arclength of $t \mapsto \langle \cos(t), t \sin(t), t^2 \rangle$ for t from 2 to 3.

Solution: $\int_{2}^{3} \sqrt{(-\sin(t))^{2} + (\sin(t) + t\cos(t))^{2} + (2t)^{2}} dt$

(h) If an ant is climbing down a hill whose height is given by $z = x^2 + y^2 + 3x \cos(y^2)$ and is at position (1,0), what direction should the ant climb to descend the hill fastest?

Solution: $\nabla z = \langle 2x + 3\cos(y^2), 2y - 6xy\sin(y^2) \rangle$. Plugging in (1,0) gives $\langle 2+3, 0 \rangle = \langle 5, 0 \rangle$. So the ant should move in the opposite direction, towards $\langle -1, 0 \rangle = -\vec{i}$.

(i) Find the curvature of the space curve $t \mapsto \langle t, t^2, t^3 \rangle$ at the point $\langle 2, 4, 8 \rangle$.

Solution: This is a little messier. $\vec{r}'(t) = \langle 1, 2t, 3t^2 \rangle$ and $\vec{r}''(t) = \langle 0, 2, 6t \rangle$. Since we are interested in the point at t = 2, $\vec{r}'(2) = \langle 1, 4, 12 \rangle$ and $\vec{r}''(2) = \langle 0, 2, 12 \rangle$. We compute the cross product $\vec{r}'(2) \times \vec{r}''(2) = \langle 1, 4, 12 \rangle \times \langle 0, 2, 12 \rangle = \langle 0, -12, 2 \rangle$. The length of this is $\sqrt{144 + 4} = 148^{0.5}$. On the other had $|r'(2)| = \sqrt{1 + 16 + 144} = 161^{0.5}$. Hence the curvature is $\kappa = \frac{148^{0.5}}{161^{1.5}}$.

We continue 1.

(j) True or false, the normal vector is never a unit vector.

Solution: False, it is always a unit vector.

(k) Consider the following integral

$$\int_{0}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} (x^{2}+y^{2}+6) dy dx$$

Set it up in polar coordinates (but do not evaluate it).

Solution: Note that we are only integrating a half-circle of radius 2. So we setup

$$\int_0^2 \int_{-\pi/2}^{\pi/2} (r^2(\cos(\theta))^2 + r^2(\sin(\theta))^2 + 6)r dr d\theta$$

(l) Compute the cross product $\langle 0, -1, 2 \rangle \times \langle 1, 0, 3 \rangle$.

Solution: $\langle -3, 2, 1 \rangle$.

- (m) Find the equation of the tangent plane to the surface $z = x^2 + y^2$ at the point (1, 1, 2). Solution: The equation is $z - 2 = f_x(1, 1)(x - 1) + f_y(1, 1)(y - 1) = 2(x - 1) + 2(y - 1)$.
- (n) Suppose $t \mapsto \vec{r}(t)$ is a parameterization of a space curve. True or false $\vec{r}'(t) \cdot \vec{N}(t) = 0$.

Solution: True, we know the $\vec{N}(t)$ is perpendicular to the unit tangent vector $\vec{T}(t)$ which points in the same direction as $\vec{r}'(t)$.

(o) Give an example of a surface z = f(x, y) where

$$\lim_{(x,y)\to(0,0)}f(x,y)$$

does not exist but the following do exist:

$$\lim_{x \to 0} f(x,0) \text{ and } \lim_{y \to 0} f(0,y).$$

Solution: $z = \frac{xy}{x^2 + y^2}$

(p) Suppose that we are given a function f(x, y) with $\nabla f(1, 1) = \langle -1, 2 \rangle$ describing the height of a hill. Further suppose that the xy-coordinates of a person is given by $t \mapsto p(t) = \langle g(t), h(t) \rangle$. If $p(3) = \langle 1, 1 \rangle$ and $p'(3) = \langle 0, 1 \rangle$, is the person ascending or descending the hill at time t = 3?

Solution: Using the chain rule, $(f \circ p)'(3) = f_x(1,1)g'(3) + f_y(1,1)h'(3)$. Plugging this in we see that (-1)(0) + (2)(1) = 2 so he is ascending.

(q) State the second derivative test for finding the maxes or mins of z = f(x, y).

Solution: If (a, b) is a point satisfying $f_x(a, b) = f_y(a, b) = 0$ and we set $D = D(a, b) = f_{xx}(a, b)f_{yy}(a, b) - (f_{xy}(a, b))^2$, and the second partial derivatives are continuous then (1) If D > 0 and $f_{xx}(a, b) > 0$, then f has a local min at (a, b).

- (2) If D > 0 and $f_{yy}(a, b) < 0$, then f has a local max at (a, b).
- (3) If D < 0 then f(a, b) is not a local maximum or minimum (it is a saddle point).
- (r) If $\nabla f = \langle 3, 2 \rangle$, what is the directional derivative of f in the direction $\langle \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \rangle$?

Solution: $\langle 3,2\rangle \cdot \langle \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\rangle = \frac{3\sqrt{2}}{4} + \sqrt{2}$

2. The base of an aquarium of volume V is made of stone and the sides are glass. If stone costs 5 times as much as glass, what dimensions should the aquarium be (in terms of V) in order to minimze the cost of materials. Justify your answer.

Solution: We have sides of length a, b and height h. The volume is V = abh. The cost is C = 2ah + 2bh + 5ab (two sides). We view V as a constant and we try to minimize C. If we solve V = abh for h we get h = V/(ab). Plugging this into the cost equation we get C = 2aV/(ab) + V2bV/(ab) + 5ab = 2V/b + 2V/a + 5ab. We then try to find local mins and maxes. We take partial derivatives

$$C_a = -2V/a^2 + 5b$$

$$C_b = -2V/b^2 + 5a$$

These equal zero when $2V = 5a^2b$ and $2V = 5ab^2$. Since obviously we need a, b > 0 we have $5a^2b = 5ab^2$ and hence a = b (this makes sense, the base should be a square to minimize cost). Then going back to $C_a = 0 = C_b$ equations we see that $a = (2V/5)^{1/3} = b$ as well. Of course then $h = V/(ab) = V/(2V/5)^{2/3} = \frac{5^{2/3}V^{1/3}}{2^{2/3}}$. This is our critical point. We need to verify that this is a min (it has to be, as obviously making something really long and skinny will have huge costs) but let's use the second derivative test for fun!

$$\begin{array}{rcl} C_{aa} = & 4V/a^3 \\ C_{bb} = & 4V/b^3 \\ C_{ab} = & 5 \end{array}$$

and so we write $D = 4V^2/(a^3b^3) - 25$. Plugging in our values for *a* and *b* we get $D = 4V^2/(2V/5)^2 - 25 = 25 - 25 = 0$.

$$D = 4V^2/(2V/5)^2 - 25 = 25 - 25 = 0.$$

so the second derivative test tells us nothing :-(We have to argue by logic as described above.

3. Find the local maximums and local minimums of the following surface

$$z = xy + \frac{1}{x} + \frac{1}{y}$$

Solution: The partial derivatives are basically the same as those in 2.. You can work out the details (there will just be a single local min at (1, 1)).

4. Find the distance of the point (1, 2, 3) from the tangent plane to the surface $z = x^3 + y^3 + xy$ at (1, 1, 3).

Solution: First we compute the tangent plane to the surface at the specified point. The partials are $z_x = 3x^2 + y$ and $z_y = 3y^2 + x$. So plugging in (1, 1) and using the tangent plane formula we get

$$z-3 = 4(x-1) + 4(y-1)$$
 or $4x + 4y - z = 5$.

For simplicity, let's move the origin to (1, 1, 3). Then our tangent plane becomes 4x + 4y - z = 0and the point (1, 2, 3) becomes (0, 1, 0). So we need to find that distance. The normal vector to the tangent plane is $\langle 4, 4, -1 \rangle$. We project $\langle 0, 1, 0 \rangle$ onto that vector and we get

$$\frac{\langle 4,4,-1\rangle\cdot\langle 0,1,0\rangle}{|\langle 4,4,-1\rangle|} = \frac{4}{\sqrt{17}}$$

which is slightly smaller than 1 (and that makes sense, because (1,2,3) is a distance of 1 from (1,1,3).)

5. Reparameterize the space curve $t \mapsto \langle 2t+1, 3t, -t \rangle$ with respect to arc length.

Solution: Because this is a parameterization of a line and it is a constant rate, this is really easy (no integrals required). Imagining this as the position of a particle, in one unit of time, the particle moves $\langle 2, 3, -1 \rangle$ which is a vector of length $\sqrt{14}$. Hence dividing t by $\sqrt{14}$ gives us a parameterization

$$s \mapsto \langle (2s/\sqrt{14}) + 1, 3s/\sqrt{14}, -s/\sqrt{14} \rangle.$$

6. Find the volume of the solid bounded by the cylinder $y^2 + z^2 = 4$ and the planes x = 2y, z = 0, y = 4.

7. Sketch the region of integration of the following integral

$$\int_{1}^{2} \int_{0}^{\ln x} x dy dx$$

and then rewrite the integral as

$$\int_{a}^{b} \int_{g_{1}(y)}^{g_{2}(y)} x dx dy$$

In particular, find the constants a, b and the functions $g_1(y)$ and $g_2(y)$.

8. Setup an integral to find the volume of the solid enclosed by the parabolic cylinders $y = 1 - x^2$, $y = x^2 - 1$ and the planes x + y + z = 2 and 2x + 2y - z + 10 = 0.