
WORKSHEET #10 – MATH 1260

FALL 2014

NOT DUE, NOVEMBER 21ST

1. First we begin with short answer questions.

(a) Define the term open cover.

Solution: An open cover a set W ⊆ Rn is a collection of open sets {Ui} such that every
point of W is in at least one Ui.

(b) Define the term compact.

Solution: A subset W ⊆ Rn is called compact if every open cover of W has a finite
subcover.

(c) Write down an open cover of the open interval (0, 1) that does not have a finite subcover.

Solution: For each integer i ≥ consider Ui = (1i −
1
2i ,

1
i + 1

2i). These ought to do the job.
There is no finite cover because a finite number of them cannot get arbitrarily close to zero.

(d) Write down a precise definition of what it means for a function f : Rn −→ Rm to be continu-
ous.

Solution: You could simply say the inverse image of an open set is open, or you could
say for every a ∈ Rn, and every ε > 0, if Bf(a),ε is a ball of radius ε around f(a) ∈ Rm then
there is a δ > 0 so that if Ba,δ is a ball of radius δ around a, then f(Ba,δ) ⊆ Bf(a),ε.

(e) If ~r(t) = 〈x(t), y(t), z(t)〉, for t = 0 to 3, is a parameterization of a curve in R3, write down
an integral that would compute its arclength.

Solution: ∫ 3

0
|r′(t)|dt or

∫ 3

0

√
x′(t)2 + y′(t)2 + z′(t)2dt

would work fine.

(f) State Green’s theorem.

Solution: If ~F = 〈P,Q〉 is a vector field on R2 with continuous partial derivatives and
A ⊆ R2 is a closed path connected region bounded by a simple piece-wise smooth closed
curve C, then ∫

C

~F · ds =

∫∫
A

(Qx − Py)dA.

(g) State the divergence theorem.

Solution: If ~F = 〈P,Q,R〉 is a vector field on R3 with continuous partial derivatives
and A ⊆ R3 is a closed path connected 3-dimensional region bounded by a piece-wise smooth
surface S (with outward orientation) then∫ ∫

S

~F · dS =

∫ ∫ ∫
A

div~FdV.
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We continue 1.

(h) Is the following vector field the gradient of a potential function? ~F = 〈y, y, cos(z)〉

Solution: The curl is nonzero, so no it is not.

(i) Rewrite the integral ∫ 1

−1

∫ √1−x2
−
√
1−x2

∫ √1−x2−y2

0
x2ydzdydx

in spherical coordinates (do not evaluate or simplify unless you want to).

Solution: This is just the top half of a sphere. So we integrate∫ 2π

0

∫ π/2

0

∫ 1

0
(r cos(θ) sin(φ))2(r sin(θ) sin(φ))(r2 sin(φ))drdφdθ

(j) Is the following vector field the curl of some other vector field F = 〈yecos(z), x2 1
1+x2+z2

, ex∗y〉?

Solution: The div is zero, so yes it is.

(k) Use Green’s theorem to compute the work done by the vector field ~F = 〈y, 2x〉 on a particle
that moves in a circle of radius 2 around the point 〈23, 111111〉.

Solution: Qx−Py = 1, so we are just integrating this over the circle of radius 1 centered
at the point 〈23, 111111〉. But that’s just computing the area of the circle which is of course
equal to πr2 = 4π.

(l) Give an example of a vector field that is not conservative.

Solution: ~F = 〈y, 0〉 works since Qx − Py 6= 0.

(m) Setup an integral to compute the volume of a region below the z = x+ y + 10 plane, above
the parabaloid z = −5 + x2 + y2 and inside the cylinder x2 + y2 = 1. Do not evaluate the
integral.

Solution: ∫ 1

−1

∫ √1−x2
−
√
1−x2

∫ x+y+10

−5+x2+y2
1dzdydx

One can do it in cylindrical coordinates too of course.

(n) Parameterize the part of the parabaloid z = x2 + y2 that lies above the triangle with vertices
〈0, 0, 0〉, 〈0, 1, 0〉, 〈1, 0, 0〉. Use a function ~r(u, v) and make sure to specify the domain that
the u, v are allowed to come from.

Solution: We parameterize the parabaloid by ~r(u, v) = 〈u, v, u2 + v2〉. We have u ≥ 0,
u ≤ 1− v, v ∈ [0, 1].
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2. Consider a particle moving along a curve parameterized by ~r(t) = 〈t(t− 1)esin(t) + t2, 1− t− (et−
1)(t − 1) sin(et)〉 for t = 0 to 1. Find the work done by the force field ~F = 2xy~i + (x2 + 1)~j as the
particle moves along this curve segment.

Solution: The curve is really messy but notice that the vector field ~F is conservative. Indeed
~F = ∇x2y+y = ∇f . Notice also that ~r(0) = 〈0, 1〉 and that ~r(1) = 〈1, 0〉. Hence by the fundamental
theorem for line integrals, we only have to compute f(~r(1))−f(~r(0)) = f(1, 0)−f(0, 1) = 0−1 = −1.
Alternately, you could have just done a line integral along the line from 〈0, 1〉 to 〈1, 0〉.

3. Consider the region above the plane z = −1, below the plane z = 2x and inside the cylinder
x2 + y2 = 1 (in other words, z ≥ −1, z ≤ x, x2 + y1 ≤ 1). Draw the region. Suppose now that the
density of the object is given by the formula ρ(x, y, z) = 5 cos(x)ez. Setup, but do not evaluate an
integral that computes the mass of the region.

Solution: First we have to figure out where the two planes intersect. z = −1 and z = 2x means
that 2x = −1 so x = −1

2 . So since we need 2x ≥ −1, we really must have x ≥ −1
2 . The following

integral will work ∫ 1

− 1
2

∫ √1−x2
−
√
1−x2

∫ 2x

−1
(5 cos(x)ez)dzdydx
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6. Let S be the surface defined by the equation

z = x(1− x)y(1− y)(7 + sin(xy) + ecos(x))

and above the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Let ~F be the vector field y2~i − ~j + x~k. Compute the
flux integral ∫∫

S

~F · dS.

Solution: One quickly notices that ÷(~F ) = 0 so this flux integral is independent of surface. Now
one could figure out what this vector field is the curl of and do a line integral (with 4 components) it’s
just as easy to notice that this integral is independent of surface. So let’s parameterize the surface
~r(u, v) = 〈u, v, 0〉 and notice it has the same boundary as S. We notice that the normal vector with
this parameterization is 〈0, 0, 1〉 (you might even be able to see this without a cross product...). Then
we compute the flux integral∫ 1

0

∫ 1

0
〈v2,−1, u〉 · 〈0, 0, 1〉dudv =

∫ 1

0

∫ 1

0
ududv =

∫ 1

0
u2/2|10dv =

∫ 1

0

1

2
dv =

1

2
.

7. Suppose an extremely complicated surface S (with upward orientation) defined by a (continuously
differentiable) equation z = f(x, y) is always ≥ 2 and intersects the z = 2 plane in a circle of radius 2
centered at the point 〈0, 0, 2〉. Further suppose that the volume of the region above the plane z = 2,
below the surface z = f(x, y) and above the aforementioned circle is equal to 3. Compute∫∫

S
〈3x, ez, y + 1〉 · dS.

Solution: We notice that div〈x, ez, y〉 = 3. We also observe that if S2 is the surface which is the
circle of radius 2 centered at 〈0, 0, 2〉 with upwards orientation then

−
∫∫

S2

〈3x, ez, y + 1〉 · dS +

∫∫
S
〈3x, ez, y + 1〉 · dS =

∫∫∫
E

div〈3x, ez, y + 1〉dV
∫∫∫

E
3dV

where E is the region bounded by S and S2 and so the above is equal to 3 · 3 = 9. Then we try to
solve for

∫∫
S〈3x, e

z, y+1〉·dS. Thus we just need to compute
∫∫
S2
〈3x, ez, y+1〉·dS. We parameterize

S2 by ~r(u, v) = 〈u, v, 2〉. Clearly the normal vector (with upward orientation) is just 〈0, 0, 1〉. Hence
we compute ∫ 2

−2

∫ √4−v2
−
√
4−v2

(v + 1)dudv.

We turn this into polar coordinates (u = r cos(θ), v = r sin(θ)).∫ 2π

0

∫ 2

0
(r sin(θ) + 1)rdrdθ =

∫ 2π

0
(sin(θ)

8

3
+ 2)dθ =

8

3
(− cos(θ) + 2θ)|2π0 = 4π.

Hence our desired integral is equal to 9 + 4π.
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