WORKSHEET #10 - MATH 1260 FALL 2014

NOT DUE, NOVEMBER 21ST

- 1. First we begin with short answer questions.
 - (a) Define the term open cover.
 - (b) Define the term *compact*.
 - (c) Write down an open cover of the open interval (0,1) that does not have a finite subcover.
 - (d) Write down a precise definition of what it means for a function $f : \mathbb{R}^n \to \mathbb{R}^m$ to be continuous.
 - (e) If $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$, for t = 0 to 3, is a parameterization of a curve in \mathbb{R}^3 , write down an integral that would compute its arclength.
 - (f) State Green's theorem.
 - (g) State the divergence theorem.

We continue 1.

- (h) Is the following vector field the gradient of a potential function? $\vec{F} = \langle y, y, \cos(z) \rangle$
- (i) Rewrite the integral

$$\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} x^2 y dz dy dx$$

in spherical coordinates (do not evaluate or simplify unless you want to).

- (j) Is the following vector field the curl of some other vector field $F = \langle ye^{\cos(z)}, x^2 \frac{1}{1+x^2+z^2}, e^x * y \rangle$?
- (k) Use Green's theorem to compute the work done by the vector field $\vec{F} = \langle y, 2x \rangle$ on a particle that moves in a circle of radius 2 around the point $\langle 23, 11111 \rangle$.
- (1) Give an example of a vector field that is not conservative.
- (m) Setup an integral to compute the volume of a region below the z = x + y + 10 plane, above the parabaloid $z = -5 + x^2 + y^2$ and inside the cylinder $x^2 + y^2 = 1$. Do not evaluate the integral.
- (n) Parameterize the part of the parabaloid $z = x^2 + y^2$ that lies above the triangle with vertices $\langle 0, 0, 0 \rangle, \langle 0, 1, 0 \rangle, \langle 1, 0, 0 \rangle$. Use a function $\vec{r}(u, v)$ and make sure to specify the domain that the u, v are allowed to come from.

2. Consider a particle moving along a curve parameterized by $\vec{r}(t) = \langle t(t-1)e^{\sin(t)} + t^2, 1-t-(e^t-1)(t-1)\sin(e^t) \rangle$ for t = 0 to 1. Find the work done by the force field $\vec{F} = 2xy\vec{i} + (x^2+1)\vec{j}$ as the particle moves along this curve segment.

3. Consider the region above the plane z = -1, below the plane z = 2x and inside the cylinder $x^2 + y^2 = 1$ (in other words, $z \ge -1, z \le x, x^2 + y^1 \le 1$). Draw the region. Suppose now that the density of the object is given by the formula $\rho(x, y, z) = 5\cos(x)e^z$. Setup, but do not evaluate an integral that computes the mass of the region.

4. Let S be the surface defined by the equation

$$z = x(1-x)y(1-y)(7+\sin(xy) + e^{\cos(x)})$$

and above the square $0 \le x \le 1$, $0 \le y \le 1$. Let \vec{F} be the vector field $y^2 \vec{i} - \vec{j} + x\vec{k}$. Compute the flux integral

$$\iint_{S} \vec{F} \cdot dS$$

5. Suppose an extremely complicated surface S (with upward orientation) defined by a (continuously differentiable) equation z = f(x, y) is always ≥ 2 and intersects the z = 2 plane in a circle of radius 2 centered at the point $\langle 0, 0, 2 \rangle$. Further suppose that the volume of the region above the plane z = 2, below the surface z = f(x, y) and above the aforementioned circle, is equal to 3. Compute

$$\iint_{S} \langle 3x, e^{z}, y+1 \rangle \cdot dS.$$