EXTRA CREDIT #2- MATH 1260 **FALL 2014**

DUE 9/19/14

Consider a function $\vec{v}: \mathbb{R}^1 \to \mathbb{R}^n, \vec{v}(t) = \langle f(t), g(t), \ldots \rangle$. In other words, this is a parameterized space curve in \mathbb{R}^n . We will consider limits and continuity with some care.

First consider the following notion. For any subset $U \subseteq \mathbb{R}^n$ (for instance perhaps U is the set of points whose distance from the origin in < 1), we form $\vec{v}^{-1}(U)$. This is the set of points $t \in \mathbb{R}^1$ so that $\vec{v}(t) \in U$.

For example, if $\vec{v}(t) = \langle t, t, t \rangle$ a parameterized line through the origin, and U is the set of points of distance < 1 from the origin, the $\vec{v}^{-1}(U)$ is the open interval $\left(-\sqrt{\frac{1}{3}},\sqrt{\frac{1}{3}}\right)$ since for every t in that interval we see that $\vec{v}(t)$ is in the ball of radius < 1.

- 1. For each function and open set U find $\vec{v}^{-1}(U)$. (1 point each)

 - (a) $\vec{v}(t) = \langle t, t, t \rangle$ and U is the solid cylinder $x^2 + y^2 \leq 4$. (b) $\vec{v}(t) = \langle t, t^2, 1 \rangle$ and U is the surface of the cone $x^2 + y^2 = z^2$.
 - (c) $\vec{v}(t) = \langle \cos(t), \sin(t), t \rangle$ and U is the interior of the ellipsoid $(x/2)^2 + (y/3)^2 + z^2 < 1$.

Recall the following from class.

Definition 1. We say

$$\lim_{t \to a} \vec{v}(t) = \vec{x} = \langle x_1, x_2, \ldots \rangle$$

if for every $\varepsilon > 0^{-1}$ there exists a $\delta > 0^{-2}$ so that if $t \neq a$ is within δ of a^{-3} then $\vec{v}(t)$ is within ε of \vec{x} 4

2. Suppose that $\vec{v}(t)$ is the function $\vec{v}(t) = \langle 3t+1, -2t, t^2 \rangle$. We expect that $\lim_{t \longrightarrow 1} \vec{v}(t) = \langle 4, -2, 1 \rangle$. Let $\varepsilon = 0.01$. Find $\delta > 0$ so that if t is within δ of π then $\vec{v}(t)$ is within ε of $\langle -1, 0, \pi \rangle$. (2 points)

3. For the same function as in 1., find a formula for δ in terms of ε so that if t is within δ of 1 then $\vec{v}(t)$ is within ε of $\langle 4, -2, 1 \rangle$. (4 points)

Definition 2. We say that a subset $U \subseteq \mathbb{R}^n$ is open if for each point $x \in U$, there is a ball of some positive radius, centered at x and contained in U. In \mathbb{R}^1 , being open just means that for every point $x \in U$, there is an interval centered at x and inside U.

¹thought of as a radius of a ball around \vec{x}

²thought of as a radius of an interval around a

³written as $0 < |t-a| < \delta$

⁴written as $|\vec{v}(t) - \vec{x}| < \varepsilon$

4. Find 3 different sets in \mathbb{R}^3 which contain the origin and are open. Justify your answer. Note pictures are useful and can be part of a correct explanation. (1 point)

Recall that a function $\vec{v} : \mathbb{R}^1 \to \mathbb{R}^n$ is called continuous if for every $t_0 \in \mathbb{R}^1$ we have that $\lim_{t \to \infty} \vec{v}(t) = \vec{v}(t_0).$

$$\lim_{t \longrightarrow t_0} \vec{v}(t) = \vec{v}(t_0)$$

5. Suppose that $\vec{v} : \mathbb{R}^1 \to \mathbb{R}^n$ is continuous. Show that if U in \mathbb{R}^n is an open ball, then $\vec{v}^{-1}(U)$ is an open set. Conclude that if U is an open set, then $\vec{v}^{-1}(U)$ is also an open set. (5 points)

Hint: Pictures showing what you are talking about help your argument alot.

6. Suppose now that $\vec{v} : \mathbb{R}^1 \to \mathbb{R}^n$ is a function so that $\vec{v}^{-1}(U)$ is open for every open set U. Show that \vec{v} is continuous. (5 points)