
F -SINGULARITIES AND FROBENIUS SPLITTING NOTES
9/9-2010

KARL SCHWEDE

1. Frobenius splittings of projective varieties and graded rings

Given a projective variety X with a ((very) ample) Cartier divisor A, we can construct
the section ring

S := ⊕n≥0OX(nA).

Likewise, given an OX-module M , we can construct M := ⊕n≥0M (n) where M̃ = M (see
for example [Har77]).

If L is a very ample divisor corresponding to an embedding into Pn with associated section
ring S, then S may or may not agree with the affine cone of X (in Pn). If X is normal,
then the affine cone and SpecS agree if and only if the embedding is projectively normal.
However, if L is sufficiently ample, then the two rings agree.

If X is an F -finite scheme, we can consider F e
∗OX and the associated module M :=

⊕n≥0(F
e
∗OX)(n) and compare it with F e

∗S.

Question 1.1. Is M isomorphic to F e
∗S as a graded S-module?

We’ll answer this question with an example.

Example 1.2. Consider X = P1
k, k = k̄ with the usual ample divisor OX(1). In this case,

M = ⊕n≥0F
e
∗OX(npe) which is quite different from F e

∗S = ⊕n≥0F
e
∗OX(n) (in F e

∗S, some
graded pieces are k-vector spaces of dimension p).

One should note that F e
∗M is not a Z-graded S-module. It is instead a Z[1/pe]-graded S-

module. By [F e
∗M ]n=0 mod Z we mean the direct summand of F e

∗M with integral coefficients.
With this in mind.

Lemma 1.3. Given a saturated S-module M corresponding to a coherent sheaf M , we have
an isomorphism of S-modules [F e

∗M ]n=0 mod Z ∼= ⊕n≥0(F
e
∗M )(n).

This yields the following interesting result.

Proposition 1.4. Suppose that X is an F -finite F -split scheme, and L is any line bundle.
Then the section ring

S := ⊕i≥0H
0(X,L i)

is also Frobenius split.

Proof. We have the following splittings for all i ≥ 0

L i → F∗L
ipe → L i

where the composition is an isomorphism and the first map is Frobenius. This implies that
S → [F∗S]n=0 mod Z splits. But [F∗S]n=0 mod Z → F∗S also clearly splits. Composing these
splittings gives the desired result. �
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The converse to the previous proposition also holds if L is ample.

Theorem 1.5. Suppose that X is an F -finite F -split scheme, L is an ample line bundle,
and S is the section ring of X with respect to L . If S is Frobenius split, then so is X.

We will prove this in stages. The first stage allows us to assume that L is (very very)
ample (which isn’t strictly necessary, but it is harmless and easy regardless).

Lemma 1.6. If S is a Frobenius split graded ring, then any veronese subring is also Frobenius
split.

Proof. Suppose that S(n) is the nth veronese subring of S. The map S(n) ⊆ S is clearly split,
thus S(n) is Frobenius split as well. �

Remark 1.7. If S(n) is Frobenius split and p does not divide n, then S is also split as we will
see later (the Veronese map is étale in codimension 1 in this case).

Lemma 1.8. If S is a Frobenius split graded ring, then S has a “graded” Frobenius splitting.

Proof. To define a graded Frobenius splitting, we first have to remind ourselves what the
grading on F∗S is. Remember, F∗S is Z[1/p]-graded, which makes the Frobenius map S →
F∗S a degree preserving graded map. A graded splitting is thus going to be a graded (degree
preserving) map F∗S → S that sends 1 to 1. Since S is split, there are obviously plenty
of (possibly non-graded) maps φ : F∗S → S which sends 1 to 1. We simply have to find a
graded such map.

On the other hand, we have the evaluation-at-1 map HomS(F∗S, S) → S. Because S is
F -finite, the module Z[1/p]-graded HomS(F∗S, S) is generated over S0 by graded but degree
shifting maps F∗S → S. So suppose φ is an arbitrary splitting. We can write φ = φ0+· · ·+φn

where φn are degree shifting maps and φ0 is degree preserving (this is a basic commutative
algebra fact, a proof can be found in [BH93, Section 1.5]). It is clear that φ0(1) = 1 because
φ(1) equals 1 and none of the other φi(1) can possibly land in the correct degree. Thus φ0

is our desired degree preserving splitting. �

Proof of Theorem 1.5. We may assume that L is very (very) ample and so our ring standard
graded (generated in degree 1). We have the following composition

S → [F∗S]n=0 mod Z → F∗S

By the previous lemma, this composition has a degree preserving graded splitting. Thus

S → [F∗S]n=0 mod Z also has a degree preserving graded splitting. Thus OX = S̃ → F̃∗S =
F∗OX also splits (as desired). �

Finally, let us give an example to elliptic curves. We have already seen that a supersingular
elliptic curve cannot be F -split (ie, an F -split elliptic curve must be ordinary), we will now
prove the converse.

First we recall that H omX(F e
∗OX , ωX) ∼= ωX (as we did this before, this was non-

canonical) for X a variety over an algebraically closed (or even F -finite) field. Thus, applying
the functor H omX( ,OX) to F : OX → F∗OX gives us a map F e

∗ωX → ωX (sometimes
called the trace map).

Proposition 1.9. Suppose that X is an ordinary 1elliptic curve, then X is F -split.

1Ordinary means that F : H1(X,OX)→ H1(X,OX) is injective.
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Proof. We know that H1(X,OX) → H1(X,F∗OX) is injective. Serre-duality tells us that
H0(X,F∗ωX) → H0(X,ωX) is surjective (where this map is induced by what we called the
trace map above, one can see this via Grothendieck duality or by a degenerating spectral
sequence argument). But on an elliptic curve, ωX

∼= OX so that we have a map φ : F∗OX →
OX that is surjective on global sections. In particular, there is a global section of F∗OX

which is sent to 1 by φ. This element is just a unit, and so by rescaling, we can assume that
φ sends 1 to 1 and is thus a splitting. This means �

We also do an example of these ideas for Pn.

Example 1.10. Suppose that X = Pn
k where k = k̄. For n = 1 we already computed F∗OX .

Let us at least show that F e
∗OX is a direct sum of line bundles for n > 1 (this is an old result

due to Hartshorne). Let S denote the section ring with respect to the usual O(1) (so that
S = k[x0, . . . , xn]. We have the graded module M := ⊕n≥0(F

e
∗OX)(n) which we know is a

summand of F e
∗OS/ However, F e

∗OS is a free S-module, which implies that M is projective
and thus also a free S-module because M is graded (see for example [BH93, Proposition

1.5.15(d)]). So write M = ⊕S(i) for various i. Therefore F e
∗OX = M̃ = ⊕S̃(i) = ⊕OX(i).

We also give an example related to projective normality. Recall that on the first day of
class we showed that if Z ⊆ Pn is compatibly Frobenius split in X = Pn, then it’s embedding
is projectively normal (meaning in this case that H0(X,OX(i))→ H0(Z,OZ(i)) is surjective
for all i, this always happens for a good enough veronese). We will prove a partial converse
to this statement.

Proposition 1.11. Suppose that Z is a Frobenius split variety embedded (projectively nor-
mally) in X = Pn. Then Z is compatibly Frobenius split in X = Pn.

Proof. In fact, we will show that any Frobenius splitting of Z extends to one on Pn. Fix φ :
F e
∗OZ → OZ to be a map. This induces a graded degree-preserving map Φ : ⊕H0(X, (F e

∗OZ)(i))→
R on the section ring R = ⊕H0(X,OZ(i)) as we’ve seen. However, because of the projective
normality assumption, R is a quotient of S = ⊕H0(X,OX(i)) (this means that the affine
cone and the section ring coincide). But S is a polynomial ring and so a graded version of
the proof of Fedder’s Lemma implies that Φ extends to a map Φ̄ : ⊕H0(X, (F e

∗OX)(i))→ S
(and we may assume that this map is also graded and degree preserving). Using the ˜
operation gives us our splitting on X which is compatible with the one on Z. �

We’ll later see that Frobenius splitting has some analog with regards to log Calabi-Yau
varieties. Furthermore, I know of no analog of this statement in the log-Calabi-Yau context.
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