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1. (Weak/Semi)normality and Frobenius splitting

Today we’ll prove that a F -split ring is weakly normal and thus seminormal (so first I’ll
define these terms).

First we’ll talk about some hand-wavy geometry. Seminormality (and weak normality)
are ways of forcing all gluing of your scheme is as transverse as possible. So first what is
“gluing”?

Suppose that R is an F -finite reduced ring with normalization RN (domain of finite type
over a field is fine). The semi-normalization RSN (and weak normalization RWN of R is a
partial normalization of R inside RN). Since R is F -finite it is excellent, and so all these
extensions are finite extensions (ie, we don’t have to worry about extreme funny-ness).

Definition 1.1. [AB69], [GT80], [Swa80] A finite integral extension of reduced rings i : A ⊂
B is said to be subintegral (respectively weakly subintegral) if

(i) it induces a bijection on the prime spectra, and
(ii) for every prime P ∈ SpecB, the induced map on the residue fields, k(i−1(P ))→ k(P ),

is an isomorphism (respectively, is a purely inseparable extension of fields).

Remark 1.2. A subintegral extension of rings has also been called a quasi-isomorphism; see
for example [GT80].

Remark 1.3. Condition (ii) is unnecessary in the case of extensions of rings of finite type
over an algebraically closed field of characteristic zero.

Definition 1.4. [GT80, 1.2], [Swa80, 2.2] Let A ⊂ B be a finite extension of reduced
rings. Define +

BA to be the (unique) largest subextension of A in B such that A ⊂ +
BA is

subintegral. This is called the seminormalization of A inside B. A is said to be seminormal
in B if A = +

BA. If A is seminormal inside its normalization, then A is called seminormal.

Definition 1.5. [AB69], [Yan85], [RRS96, 1.1] Let A ⊂ B be a finite extension of reduced
rings. Define ∗

BA to be the (unique) largest subextension of A in B such that A ⊂ ∗
BA is

weakly subintegral. This is called the weak normalization of A inside B. A is said to be
weakly normal in B if A = ∗

BA. If A is weakly normal inside its normalization, then A is
called weakly normal.

Remark 1.6. Note the following set of implications.

Normal +3 Weakly Normal +3 Seminormal

Consider the following examples:

(i) The union of two axes in A2, Spec k[x, y]/(xy), is both weakly normal and seminormal,
but not normal (an irreducible node is seminormal as well).
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(ii) The union of three lines through the origin in A2, Spec k[x, y]/(xy(x− y)), is neither
seminormal nor weakly normal.

(iii) The union of three axes in A3, Spec k[x, y, z]/(x, y)∩(y, z)∩(x, z), is both seminormal
and weakly normal. In fact, it is isomorphic to the seminormalization of (ii).

(iv) The pinch point Spec k[a, b, c]/(a2b − c2) ∼= Spec k[x2, y, xy] is both seminormal and
weakly normal as long as the characteristic of k is not equal to two. In the case that
char k = 2, then the pinch point is seminormal but not weakly normal. Notice that
if char k = 2 then the inclusion k[x2, y, xy] ⊂ k[x, y] induces a bijection on spectra.
Furthermore the induced maps on residue fields are isomorphisms at all closed points.
However, at the generic point of the singular locus P = (y, xy), the induced extension
of residue fields is purely inseparable. This proves that it is not weakly normal.

(v) R[x, y]/(x2 + y2) is seminormal and weakly normal (even though the residue field
changed).

A useful way to construct examples is the following lemma.

Lemma 1.7. Suppose that A is a ring, I ⊆ is an ideal and B is another ring with a map
φ : B → A/I. Then the pullback C of the diagram of rings

{A→ A/I ← B}
has the following properties.

(i) SpecC has a closed subscheme W that maps isomorphically to SpecB via the induced
map (from the pullback diagram).

(ii) The induced map C → A gives an isomorphism between (SpecC)\W and (SpecA)\
(SpecA/I).

(iii) As topological spaces, SpecC is the pushout of the (dual) diagram of Spec’s.

All of the examples from the previous remark can be constructed as pull-backs in this way.
There are other characterizations of weakly normal and seminormal which are of a more

algebraic nature, and are often very useful. We’ll only prove the second one.

Proposition 1.8. [LV81, 1.4] Let A ⊂ B be a finite integral extension of reduced rings; the
following are then equivalent:

(i) A is seminormal in B
(ii) For a fixed pair of relatively prime integers e > f > 1, A contains each element b ∈ B

such that be, bf ∈ A. (also see [Ham75] and [Swa80] for the case where e = 2, f = 3).

Proposition 1.9. [RRS96, 4.3, 6.8] Let A ⊂ B be a finite integral extension of reduced rings
where A contains Fp for some prime p; the following are then equivalent:

(i) A is weakly normal in B.
(ii) If b ∈ B and bp ∈ A then b ∈ A.

Proof. First we show that (i) implies (ii). Suppose, for a contradiction, that there is a b ∈ B
such that bp ∈ A but b /∈ A. We will show that A[b] is subintegral over A. Observe that for
any element f ∈ A[b], we know that fp ∈ A.

First suppose that P ∈ SpecA, we will show that there is exactly one prime Q ∈ SpecA[b]
lying over P (obviously there is at least one and at most finitely many). Suppose that cd ∈√
P · SpecA[b], then (cd)n ∈ P ·SpecA[b] and so even better, (cd)pn ∈ (P ·SpecA[b])∩A = P ,
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thus cp ∈ P or dp ∈ P by the primality of P . But if cp ∈ P then c ∈
√
P · SpecA[b] and

likewise with d. This proves that at least the spec’s line up. The residue field extensions are
even easier since AP/P ⊆ (A[b]√

P ·A[b]P
/
√
P · A[b]P ) is obviously a field extension generated

by a purely inseparable element (if the extension is non-trivial).
Conversely, suppose that A ⊆ B is not a weakly normal extension. Thus we may assume

that it is a weakly subintegral extension. Choose b ∈ B such that b /∈ A. It is sufficient
to show that bp

e ∈ A for some e > 0. But first we make several reductions. Note that if
condition (ii) holds on A ⊆ B, then it also holds after localizing at a multiplicative subset.
To see this, note that if b ∈ B, (b/s) ∈ S−1B and (b/s)p ∈ S−1A, then by assumption
sn(b/s)p ∈ A for some n (we may assume n = pm). Thus (sm−1b)p ∈ A and sm−1b ∈ B so
that sm−1b ∈ A by assumption. Thus b/s ∈ A also. Consider the locus of SpecA over which
A is not weakly normal in B (this locus is closed – it’s just the conductor of A ⊆ B), by
localizing, we may assume that this is the maximal ideal of the local ring A. Thus A ⊆ B
induces a bijection on points of Spec and, all residue field extensions are trivial or purely
inseparable.

Furthermore, since the extension is already both weakly subintegral and also weakly nor-
mal except at the maximal ideal, it is an isomorphism except at the maximal ideal. It follows
that the residue field extension at the maximal ideal is purely inseparable. Now, consider
the pull-back C of the following diagram.

{B → B/mB ← A/mA}
This pullback C agrees with A except at the origin possibly (and by the universal property
of pull-backs, we have A ⊆ C). However, by (ii), the extension is seminormal and since
A ⊆ C is clearly subintegral, must be an isomorphism. Choose b ∈ B, then b̄p

e ∈ A/mA for
some e > 0, thus bp

e ∈ C for that same e > 0. �

Theorem 1.10. [HR76] If R is F -split, then it is weakly normal.

Proof. Suppose that r ∈ RN and rp ∈ R. We have the splitting φ : F e
∗R→ R which sends 1

to 1. Thus φ(rp) = rφ(1) = r so that r ∈ R as well. �

We now prove a partial converse in the one-dimensional case. A special case of this can
be found in [GW77]. First we need a lemma.

Lemma 1.11. If K ⊆ L is a finite separable extension of fields, then any map φ : F e
∗K → K

uniquely extends to a map φ̄ : F e
∗L→ L.

Proof. Left to the exercises. �

Remark 1.12. In fact if K ⊆ L is not separable, then the only map F e
∗K → K which extends

to a map F e
∗L→ L is the zero map.

Theorem 1.13. If R one dimensional, F -finite and weakly normal with a perfect residue
field, then it is F -split.

Proof. In this proof, we will effectively classify one dimensional F -split varieties with perfect
residue fields. It is harmless to assume that R is local with maximal ideal m and residue field
k. Let RN denote the normalization of R. We may write RN = R1⊕· · ·⊕Rm where each Ri

is a semi-local ring with maximal ideals mi,1, . . . ,mi,ni
and residue fields ki,1, . . . , ki,ni

(each
of which is a finite, and thus separable, extension of k).
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We also have the pullback diagram

{RN = R1 ⊕ · · · ⊕Rm → (R1/m1)⊕ · · · ⊕ (Rm/mm) = k1,1 ⊕ · · · ⊕ km,nm ← k}

The pullback C of this diagram is an extension ring of R. It is also clearly a subintegral
extension of R so R = C. Thus we will show that C is F -split. Choose a map φ : F e

∗k → k
that is non-zero. On each ki,ni

, this map extends to a map φi,ni
: F e
∗ki,ni

→ ki,ni
. Because each

Ri is a semi-local regular ring, by Fedder’s Lemma, each φi,ni
: F e
∗Ri/(∩tmi,t)→ Ri/(∩tmi,t)

extends to a map ψi,ni
: F e
∗Ri → Ri. These maps then “glue” to a map on C. �

Based on the previous result, it is natural to ask whether every φ ∈ HomR(F e
∗R,R) extends

to a map on the normalization? We will show that the answer is yes, but first we show a
result about the conductor.

Proposition 1.14. [BK05, Exercise 1.2.E] Given a reduced F -finite ring R with normaliza-
tion RN , the conductor ideal of R in RN is φ-compatible for every φ ∈ HomR(F e

∗R,R).

Proof. The conductor ideal I can be defined as “the largest ideal I ⊆ R that is simultaneously
an ideal of RN”. It can also be described as

I := AnnRR
N/R = {x ∈ R|xRN ⊆ R}.

Following the proof of [BK05, Proposition 1.2.5], consider φ ∈ HomR(F e
∗R,R). Notice, that

by localization, φ extends to a map on the total field of fractions (which contains RN). We
will abuse notation and also call this map φ (since it restricts to φ : F e

∗R→ R). Now choose
x ∈ F e

∗ I and r ∈ RN . Then φ(x)r = φ(xrpe
) ∈ φ(F e

∗R) ⊆ R. Thus φ(x) ∈ I as desired. �

Proposition 1.15. [BK05, Exercise 1.2.E(4)] For a reduced F -finite ring R, every map
φ : F e

∗R → R, when viewed as a map on total field of fractions, restricts to a map φ′ :
F e
∗R

N → RN on the normalization.

Proof. We follow the hint for [BK05, Exercise 1.2.E(4)]. For any x ∈ RN ∈ K(R), we wish to
show that φ(x) ∈ RN . First we show that we can reduce to the case of a domain. We write
R ⊆ K(R) = K1 ⊕ · · · ⊕Kt as a subring of its total field of fractions. Since each minimal
prime Qi of R is φ-compatible, it follows that φ induces a map φi : F e

∗R/Qi → R/Qi for
each i. Notice that the normalization of SpecR is a disjoint union of components (each one
corresponding to a minimal prime of R), and the ith component is equal to Spec(R/Qi)

N .
Thus, since we are ultimately interested in φ′ restricted to each (R/Qi)

N , it is harmless to
assume that R is a domain.

Suppose that I is the conductor and consider Iφ(x). For any z ∈ I, zφ(x) = φ(zpe
x) ∈

φ(F e
∗ I) ⊆ I (notice that zpe

x ∈ I since I is an ideal of RN). More generally, zφ(x)m =
zφ(x)(φ(x))m−1 ⊆ I(φ(x))m−1 which implies that Iφ(x)m ⊆ Iφ(x)m−1, and so by induction
Iφ(x)m ⊆ I ⊂ R for all m > 0. This implies that for every c ∈ I ⊆ R we have that
cφ(x)m ∈ I ⊆ R. Therefore φ(x) is integral over R by [HS06, Exercise 2.26(iv)]. �

In particular, if R is F -split, then its normalization is also F -split. This proof (and the
way we showed it) imply the following more general result.

Theorem 1.16. An F -finite weakly normal one-dimensional local ring is F -split if and only
if every residue field extension of R ⊆ RN is separable.
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Proof. Suppose that (R,m) is the local ring in question. If every residue field extension of
R in RN is separable, then the proof of Theorem 1.13 implies that R is F -split.

Conversely, if R is F -split, then there exists a surjective map φ : F∗R→ R which extends
to a map φ̄ : F∗R

N → RN and which is compatible with I, the conductor ideal of R ⊆ RN

(note that the induced map on R/I is non-zero). Since R is local and weakly normal, I
is a radical ideal and thus I = m. Furthermore, I is a radical ideal on RN and so it is a
finite intersection of maximal ideals. In particular, the map φ restricted to R/I = R/m = k
extends to a map on the direct sum of its residue field extensions RN/I = k1 ⊕ · · · ⊕ kn. In
particular, it extends to each ki. But we know the map φ/m : F∗k → k is non-zero, and
since it extends to a map F∗ki → ki it follows that each ki is a separable extension of k. �
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