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1. Reduction to characteristic p > 0

Note that if one also has the coordinates of a point x ∈ X (closed or not), one can reduce
that closed point to characteristic p as well. Let x ⊂ R be a prime ideal of R and simply
include coefficients for a set of generators of x into A. This gives us an ideal xA ∈ RA. Note
without loss of generality we may assume that xA = x∩RA so that xA is prime. Furthermore,
we may assume that if we tensor the short exact sequence

0→ xA → RA → RA/xA → 0

by ⊗AC we simply re-obtain

0→ x→ R→ R/x→ 0,

the original exact sequence. Note that we may certainly also assume that RA/xA is A-
free as well. In particular, if x is maximal (closed) and if we are working over C or any
other algebraically closed field of characteristic zero, we may assume that RA/xA = A since
R/x ∼= C. Otherwise (still in the case where x is maximal) we see that RA/xA is a module-
finite extension of A.

The following lemma is very useful for reducing cohomology to prime characteristic, the
method of proof is essentially the same as [Har77, Chapter III, Section 12] (just different
modules are flat).

Lemma 1.1. [Har98, 4.1] Let X be a noetherian separated scheme of finite type over a
noetherian ring A, and let F be a quasi-coherent sheaf on X, flat over A. Suppose that
H i(X,F ) is a flat A-module for each i > 0. Then one has an isomorphism

H i(X,F )⊗A k(t) ∼= H i(Xk(t),Fk(t))

for every point t ∈ T = SpecA and i ≥ 0, where k(t) is the residue field of t ∈ T , Xk(t) =
X ×T Spec(k(t)), and Fk(t) is the induced sheaf on Xk(t).

Remark 1.2. In particular, by the previous lemma and flat base change, we see thatH i(XC,FC) =
0 if and only if H i(Xk(t),Fk(t)) = 0 for an open set of t ∈ SpecA.

By making various cokernels of maps free A-modules, we may also assume that maps that
are surjective over C are still surjective over A, and thus surjective in our characteristic p
model as well. The following example illustrates this.

Example 1.3. Suppose we are given a scheme X with a divisor E ⊆ X all over C. Suppose
that some map

H i(X,OX)→ H i(E,OE)
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surjects for some i. Then we consider the corresponding map

H i(XA,OXA
)→ H i(EA,OEA

)→ C → 0

with cokernel C. We may of course localize so that C is locally free over A, in which case,
since tensoring with C over A cannot annihilate a non-zero element, we obtain that C = 0.
Therefore the corresponding map was surjective in the first place. Then, since tensor is right
exact, we apply 1.1 and obtain that the map

H i(Xt,OXt)→ H i(Et,OEt)

surjects as well.

Definition 1.4. Given a class of singularities P defined in characteristic p > 0, we say that
a variety X in characteristic 0 has singularities of open P -type if for all sufficiently large
choices of A as above, and all but finitely many maximal ideal p ∈ A, Xp has P -singularities.
We say that X in characteristic zero has singularities of desne P -type if for all sufficiently
large choices of A as above, there exists a Zariski-dense set of maximal ideals p ∈ SpecA
such that Xp has P -singularities. In this way we can define singularities of (open/dense)
F -rational, F -injective and F -split/pure type.

Remark 1.5. In general, the singularities we consider are stable under base change by finite
field extensions, so one only needs to check a single finitely generated Z-algebra A.

Theorem 1.6. Suppose that X is a variety of characteristic zero. Then if X has dense
F -rational type, X has rational singularities.

Proof. Take a resolution π : X̃tøX. The map ωX̃ → ωX surjects if and only if it’s reduction
to characteristic p� 0 does (and we’ve already shown that). The Cohen-Macaulay condition
was done in the example above. �

Let’s do another example of this sort of proof. We give another definition.

Definition 1.7. Suppose that X is a normal Cohen-Macaulay variety of characteristic zero

and suppose that π : X̃ → X is a log resolution, fix E to be the exceptional divisor. We say
that X has Du Bois singularities if π∗ωX̃(E) = ωX .

Remark 1.8. Du Bois singularities can be defined for even reduced varieties, but the definition
(and proofs) are much harder.

Theorem 1.9. Suppose that X is normal, Cohen-Macaulay and has dense F -injective type,
then X has Du Bois singularities.

Proof. Let π : X̃ → X be a log resolution of X with exceptional divisor E. We reduce
this entire setup to characteristic p � 0 such that the corresponding X is F -injective. Let
F e : X → X be the e-iterated Frobenius map.

We have the following commutative diagram,

F e
∗π∗ωX̃(peE)

ρ

��

// π∗ωX̃(E)

β

��

F e
∗ωX

φ
// ωX

2



where the horizontal rows are induced by the dual of Frobenius, OX → F e
∗OX and the

vertical arrows are the canonical maps. By hypothesis, φ is surjective. On the other hand,
for e > 0 sufficiently large, the map labeled ρ is an isomorphism. Therefore the map φ ◦ ρ
is surjective which implies that the map β is also surjective. But then it must have been
surjective in characteristic zero as well, and in particular, X has Du Bois singularities. �

Remark 1.10. The above theorem also holds without the Cohen-Macaulay and normal hy-
potheses, but the proof is much more difficult.

2. Rational singularities are open F -rational type

Our main goal will to be to give a proof (modulo a hard theorem) of the following.

Theorem 2.1. [Har98], [MS97] If X is in characteristic zero has rational singularities, then
it has open F -rational type.

To prove this, we will use the following lemma which we will black-box for today. First
recall that on a normal variety X, a Q-divisor is just an element of div(X) ⊗ Q, a formal
sum of prime divisors.

Lemma 2.2. [Har98] Suppose that R0 is a ring of characteristic zero, π : X0 → SpecR0

is a log resolution of singularities, D0 is a π-ample Q-divisor with simple normal crossings
support. We reduce this setup to characteristic p� 0. Then the natural map

(F e)∨ = ΦXp : F e
∗ωXp(dpeDpe)→ ωXp(dDpe)

surjects.

Before we use this, let us explain some points. We will assume that π : X0 → SpecR0 is
projective, and thus the blow-up of some ideal sheaf J ⊆ R. It follows then that J · OX0 =
OX0(−F ) is relatively ample (here, F is an effective divisor), in particular, the relatively
effective divisors are not effective. Our divisor D0 will in practice to be something close
to the form −εF where ε is a small negative number (actually, we may twist by a Cartier
divisor, really a test element, from SpecR0 as well)

Thus, in our situation dDpe
Here is the proof idea. Choose dn ∈ R to be a test element for ωRp (we can essentially

find one of these in charcteristic zero if we are clever).
For an appropriate D = ε(−F − div(dn)) as above, we construct a diagram:

π∗F
e
∗ωXp(dpeDpe) //

��

π∗ωXp(dDpe) ∼= π∗ωXp

��

F e
∗d

nωRp

ΦRp
// ωRp

We know that ΦRp(F e
∗dωRp) is contained in τ(ωRp ,ΦRP

). Thus we have

ωR = π∗ωXp = π∗ΦX(F e
∗ωXp(dpeDpe)) ⊆ ΦR(F e

∗dωRp) ⊆ ωRp

which completes the proof.
Let us explain how we find our d ∈ R0 in characteristic zero. We fix d such that (R0)d is

regular. It follows that some power of d is a test element for (ωRp ,ΦRp) in any characteristic.
In particular, we may then choose our resolution of singularities π : X0 → SpecR0 such that
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X0 is a log resolution of (X, (d)n) for any integer n > 0. We choose −F as above and set
D = ε(−F − div(d)) where dDe = 0. After reducing to characteristic p � 0, find n > 0
such that dn is a test element. Fix pe such that εpe ≥ n. We then claim that we have a
map π∗ωXp(dpeDpe) ⊆ dωR. It is sufficient to check this in codimension 1, and so we are
simply reduced to verifying that d−εpe ÷R (d)d≤ −n÷R (d) which is obvious. The proof of
the theorem then follows from the result above.

In fact, the same proof gives us the more general result.

Theorem 2.3. [Har05], [Smi00] With the notation as above (π∗ωX)p = τ(ωRp ,ΦRp).

Remark 2.4. This was not obvious when it was first proved. While the proof I gave is
philosophically the same, it is substantially streamlined in comparison to Hara’s original
proof. In particular, we avoid several applications of local duality.

Remark 2.5. For a (quasi-)Gorenstein ring R with R ∼= ωR and π : X → SpecR as above,
π∗ωX is an example of a multiplier ideal (it is independent of the resolution by [GR70]).
Thus the previous result says that the multiplier ideal coincides with the test ideal τ(R,ΦR)
for quasi-Gorenstein rings.

Question 2.6. Is it true that if X has Du Bois singularities, then X has dense F -injective
type?

Note that X cannot have open F -injective type by the example k[x, y, z]/(x3 + y3 + z3)
which is F -injective if and only if p = 1 mod 3.

3. Multiplier ideals, log terminal and log canonical singularities

In the past section, we found analogs of F -injective and F -rational singularities. We want
to do the same for F -split singularities.

Definition 3.1. A pair (X,∆) is the combined information of a normal variety X and a
(usually effective) Q-divisor ∆. We also typically assume that (X,∆) is log Q-Gorenstein
which means that KX + ∆ ∼q mD where m ∈ Q and D is a Cartier divisor (in other words,
this means that KX + ∆ is Q-Cartier). Occasionally we will also consider triples (X,∆, at)
where a is an ideal sheaf on X and t ≥ 0 is a real number (additional generalizations are
also possible where at is replaced by a graded system of ideals, or even a formal product of
such ideals). For the moment, we will assume that a is a

Definition 3.2. A log resolution π : X̃ → X of a pair or triple (X,∆, at) is a resolution
of singularities such that a · OX̃ = OX̃(−G) and also with divisorial exceptional set E such
that E, G and the strict transform π−1

∗ ∆ of ∆ are all in simple normal crossings.

In this setting, we can choose divisorsKX̃ andKX that agree wherever π is an isomorphism.
Then we can consider:

KX̃ − π
∗(KX + ∆)− tG =

∑
aiEi

or equivalently

KX̃ + (−
∑

aiEi) = π∗(KX + ∆)− tG
where the Ei are prime divisors. Here most of the Ei are effective except for those that
agree with components of ∆ or divisorial components of V (a). We should explain the term
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π∗(KX + ∆) and note that for the purposes of this course, we will only define this when
KX + ∆ is Q-Cartier. Set choose 0 6= n ∈ Z such that n(KX + ∆) is Cartier. Then

π∗(KX + ∆) :=
1

n
π∗ (n(KX + ∆))

The ai that appear in the above formula are called discrepancies. Numbers ai associated to
an exceptional divisor Ei are called exceptional discrepancies.

Why might one want to do this (work with these ∆ at all)?

(a) If KX is Cartier (or Q-Cartier, then you can pull back KX as described above). But
if not, it’s much less clear how to pull back KX , see [DH09].

(b) As one changes from one variety to another (via restriction, finite or birational maps)
one can pick up a ∆ even if you didn’t already start with one. For example, if
π∗ : Y → X = Spec k[x, y, z]/(x4 + y4 + z4) is the obvious resolution of singularities,
then π∗KX = KY + 2E where E is the copy of the exceptional divisor. For some
purposes, it is useful to keep this information around. In particular, the data of the
pair (Y, 2E) may be as good as the data of X.

(c) (This is another variant of (b)) If one is compactifying a variety X, one often com-
pactifies with a nice divisor D such that X \D = X. Keeping track of this D is also
useful.

One can actually define some additional classes of singularities in this setting.

Definition 3.3. • We say a triple (X,∆, at) is log canonical (or lc) if all the discrep-
ancies ai satisfy ai ≥ −1. One can check this on a single log resolution.
• We say a triple (X,∆, at) is Kawamata log terminal (or klt) if all the discrepancies
ai satisfy ai ≥ −1. One can check this on a single log resolution.
• We say that a triple (X,∆, at) is purely log terminal (or plt) if all the exceptional

discrepancies ai satisfy ai ≥ −1 for all log resolutions. One needs a sufficiently big
log resolution in order to check this.
• One can also define canonical and terminal singularities by requiring that all excep-

tional discrepancies satisfy ai ≥ 0 and ai > 0 respectively.
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