
F -SINGULARITIES AND FROBENIUS SPLITTING NOTES
9/21-2010

KARL SCHWEDE

1. F -rationality

First we do an example we didn’t finish last time.

Example 1.1. Let E be an ordinary elliptic curve (we know this it is F -split) and suppose
that X = E ×k P1 is the trivial ruled surface over E. Let S be a section ring of X with
respect to a (very) very ample divisor. We will show that S is F -split (equivalently, that X
is F -split) but that S is not Cohen-Macaulay. First we show that S is not Cohen-Macaulay.
It is enough to show that H2

S+
(S) 6= 0. But, (H2

S+
(S))0 = H1(X,OX). By [Har77, Chapter

V, Lemma 2.4] (basic facts about the Cohomology of ruled surfaces) imply that this is
H1(E,OE) 6= 0 because E is an elliptic curve. Now we need to show that X is F -split. This
follows from the following easy lemma:

Lemma 1.2. Suppose that X and Y are Frobenius split schemes of finite type over k. Then
X ×k Y is also Frobenius split.

Proof. Choose φ : F∗OX → OX and ψ : F∗OY → OY both splittings (in other words, sends
1 to 1). We will construct a splitting on X ×k Y . We will do it locally (but canonically)
so that the splitting clearly glues. Thus assume that X = SpecR and Y = SpecS. We
need to construct a splitting of the Frobenius map FR⊗kS : R ⊗k S → F∗R ⊗k S. Given
r ⊗ s ∈ R⊗k S, we define α(r ⊗ s) = φ(r)⊗ ψ(s). This map is obviously R⊗ S-linear, and
it sends 1 to 1, it also clearly glues. �

Because of this, Fedder suggested that normal, Cohen-Macaulay and F -injective might be
a closer match to rational singularities than F -purity. There was some evidence for this. In
particular, Fedder showed that certain classes of hypersurfaces (defined over Z) had rational
singularities over C if and only if for all sufficiently large p > 0, the singularity viewed
modulo p had F -pure (equivalently, F -injective) singularities. Notice that this doesn’t allow
x3 +y3 +z3 because that does not have F -pure singularities for p = 2 mod 3. Elkies has since
shown that for cones over planar elliptic curves (none of which have rational singularities),
they are supersingular (and thus ordinary) for infinitely many p. If you are considering cones
over Calabi-Yau varieties (for simplicity, we also assume that these cones are also Cohen-
Macaulay, for example a K3-surface), then the condition that φ : F e

∗ωS → ωS is known for
surfaces and open for higher dimensional varieties.
F -injective singularities still aren’t quite good enough. Consider the following attempted

proof at showing the Cohen-Macaulay F -injective singularities are rational (ignoring the
issue of characteristic p > 0 reduction for now).
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Not a proof. Given a resolution of singularities π : X̃ → X = SpecR, we want to show that
π∗ωX̃ = ωX . Consider the diagram:

π∗F∗ωX̃ = F∗π∗ωX̃� _

F∗α
��

π∗ΨX̃
// π∗ωX̃� _

α

��

F∗ωX ΨX

// ωX

where the horizontal maps are the natural maps dual to Frobenius. If one can show that
π∗ΨX̃ and α are surjective, then that would imply that ΨX is surjective. Going the other
way seems hard though. The following definition was thus given which easily implies that α
is surjective. �

Definition 1.3. An F -finite reduced ring R is called F -rational if it is Cohen-Macaulay and
there are no proper / non-zero submodules of ωX stable under ΨX (ie, M ⊆ ωX such that
ΨX(M) ⊆M).

Why is this definition motivated? Well, in a polynomial ring with X = Spec k[x1, . . . , xn],

Φe
X can be identified with the map F e

∗k[x1, . . . , xn]→ k[x1, . . . , xn] that sends xp
e−1

1 . . . xp
e−1
n

to 1 and all the other monomials to zero. Given any polynomial f ∈ k[x1, . . . , xn], we can
always find a monomials m and an e � 0 such that Φe

X(mf) = 1. Thus, there are no
ΦX-stable proper ideals in a polynomial ring.

Definition 1.4. [LT81] X = SpecR is said to have pseudo-rational singularities if it is

Cohen-Macaulay and also for every proper birational map π : X̃ → X with X̃ normal,
π∗ωX̃ = ωX .

Remark 1.5. If R does not necessarily have a dualizing complex, then another definition is
used (using local cohomology modules instead of ωX , this is tantamount with replacing R
by its completion). Lipman proved that regular rings have rational singularities (and that
this holds under extreme generality).

Theorem 1.6 (Smith). If R is F -rational, then R is pseudo-rational.

Proof. This should be immediate from the diagram above. �

We will show that F -rational singularities satisfy many nice properties. In particular, we
will study their deformations, how they behave under summands, etc. We will also show
that F -rational singularities really do coincide with rational singularities by reduction mod
p > 0.

We have defined 3 different classes of singularities now. F -rational, F -split, and F -injective
(the last one has both Cohen-Macaulay and non-Cohen-Macaulay variants). We also know
that F -rational singularities are F -injective (and Cohen-Macaulay) and that F -pure sin-
gularities are F -injective (meaning hi(F∗ω

q
R) → hi(ω

q
R) surjects for all i > 0, or dually

H i
m(OX)→ H i

m(F∗OX) injects for all i > 0). We will now investigate the normality proper-
ties of F -injective and F -rational singularities.

Lemma 1.7. Suppose that R is F -finite and F -rational, then R is normal.
2



Proof. Without loss of generality, we may assume that R is local. Let RN be the normal-
ization of R. We have the following inclusion map i : R → RN . We will prove that the
map is an isomorphism. R is already Cohen-Macaulay, and so it is S2, and so it by Serre’s
criterion for normality, we simply need to check that R is regular in codimension 1. Thus
by localizing we can assume that R is a 1-dimensional ring (and thus so is RN , which is now
regular). We have the following diagram of rings.

RN
F
RN

// F∗R
N

R

i

OO

FR

// F∗R

F∗i

OO

ApplyRHomR( , ω
q
R), and then Grothendieck duality for a finite map i gives us the following

dual diagram.
ω

q
RN

i∨

��

F∗ω
q
RN

oo

F∗i∨

��

ω
q
R F∗ω

q
R

oo

All the rings in question are Cohen-Macaulay, so we can remove all the dots and merely work
with sheaves. We simply need to show that i∨ is injective because an isomorphism of the
induced map of dualizing complexes, will imply that the original map was an isomorphism.
Now, if W is a the multiplicative system of elements not contained in any minimal prime of
R, we also have the diagram

ωRN

i∨

��

γ
// W−1(ωRN ) ∼= K(R)

ωR // W−1(ωR) ∼= K(R)

where K(R) is the total field of fractions of R. We notice that ωRN is torsion-free on each
irreducible component thus the map γ is injective which implies that i∨ is also injective. �

Now we turn to F -injectivity, we do not assume that R is Cohen-Macaulay but rather
that H i

m(OX)→ H i
m(F∗OX) injects for every maximal ideal m ∈ R. Note that this condition

localizes, in particular hi(F∗ω
q
Rq

)→ hi(ω
q
Rq

) surjecting localizes.

Lemma 1.8. Suppose that (R,m) is a reduced local ring of characteristic p, X = SpecR
and that X \ m is weakly normal. Then X is weakly normal if and only if the action of
Frobenius is injective on H1

m(R).

Proof. We assume that the dimension of R is greater than 0 since the zero-dimensional case
is trivial. Embed R in its weak normalization R ⊂ RWN (which is of course an isomorphism
outside of m). We have the following diagram of R-modules.

0 // R
� � //

� _

��

Γ(X \m,OX−m)

∼=
��

// // H1
m(R) //

��

0

0 // RWN � � // Γ(Xwn \m,OXwn−m) // // H1
m(RWN) // 0
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The left horizontal maps are injective because R and RWN are reduced. One can check that
Frobenius is compatible with all of these maps. Now, R is weakly normal if and only if R
is weakly normal in RWN if and only if every r ∈ RWN with rp ∈ R also satisfies r ∈ R by
Proposition ??.

First assume that the action of Frobenius is injective on H1
m(R). So suppose that there

is such an r ∈ RWN with rp ∈ R. Then r has an image in Γ(X \m,OX−m) and therefore
an image in H1

m(R). But rp has a zero image in H1
m(R), which means r has zero image in

H1
m(R), which guarantees that r ∈ R as desired.
Conversely, suppose that R is weakly normal. Let r ∈ Γ(X \m,OX−m) be an element such

that the action of Frobenius annihilates its image r in H1
m(R). Since r ∈ Γ(X \m,OX−m)

we identify r with a unique element of the total field of fractions of R. On the other hand,
rp ∈ R so r ∈ RWN = R. Thus we obtain that r ∈ R and so r is zero as desired. �

Theorem 1.9. Let R be a reduced F -finite ring with a dualizing complex. If R is F -injective
then R is weakly normal (and thus in particular seminormal). Furthermore, R is weakly
normal if and only if H1

q (Rq)→ H1
q (F∗Rq) injects for all q ∈ SpecR.

Proof. A ring is weakly normal if and only if all its localizations at prime ideals are weakly
normal [RRS96, 6.8]. If R is not weakly normal, choose a prime P ∈ SpecR of minimal
height with respect to the condition that RP is not weakly normal. Apply Lemma 1.8 to get
a contradiction. �

Corollary 1.10. If R is a one dimensional F -finite reduced ring, then R is weakly normal
if and only if it is F -injective. In particular, if R is local and has perfect residue field, then
R is weakly normal if and only if R is F -split.

This also gives us another example of an F -injective singularity that is not weakly normal.

Example 1.11. The curve singularity corresponding to the pushout {Fp(t)[x]→ Fp(t)[x]/(x) =
Fp(t) ← Fp(tp)[s]} is weakly normal, but not F -split, since the residue field extension over
the singular point (when mapping ot the normalization) is not separable.

We now return to our study of F -rationality. In the case that R is a domain, we will also
show that ωR has a unique smallest submodule stable under ΦX .

First we need a lemma.

Lemma 1.12. Suppose that R → S is a finite map of rings such that HomR(S,R) is iso-
morphic to S as an S-module. Further suppose that M is a finite S-module.

Then the natural map

(1) HomS(M,S)× HomR(S,R)→ HomR(M,R)

induced by composition is surjective.

Proof. First, set α to be a generator (as an S-module) of HomR(S,R). Suppose we are given
f ∈ HomR(M,R) ∼= HomR(M ⊗S S,R). We wish to write it as a composition.

Using adjointness, this f induces an element Φ(f) ∈ HomS(M,HomR(S,R)). Just as with
the usual Hom-Tensor adjointness, we define Φ(f) by the following rule:

(Φ(f)(t))(s) = f(t⊗ s) = f(st) for t ∈M , s ∈ S.
Therefore, since HomR(S,R) is generated by α, for each f and t ∈M as above, we associate
a unique element af,t ∈ S with the property that (Φ(f)(t))( ) = α(af,t ).
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Thus using the isomorphism HomR(S,R) ∼= S, induced by sending α to 1, we obtain a
map Ψ : HomR(M,R)→ HomS(M,S) given by Ψ(f)(t) = af,t.

We now consider α ◦ (Ψ(f)). However,

α(Ψ(f)(t)) = α(af,t) = (Φ(f)(t))(1) = f(t).

Therefore f = α ◦ (Φ(f)) and we see that the map (1) is surjective as desired. �

In particular, this yields the following corollary.

Corollary 1.13. If φ ∈ HomR(F e
∗R,R) generates HomR(F e

∗R,R) as an R-module, then φl

generates HomR(F le
∗ R,R) as an F el

∗ R-module for all l > 0.

Theorem 1.14 (Hochster-Huneke, Blickle-Böckle). Suppose that R is an F -finite domain
and that M is a torsion-free rank one R-module with a non-zero map φ : F e

∗M →M . Then
there exists a unique smallest non-zero submodule τ(M,φ) ⊆M which is stable under φ (in
other words, which satisfies φ(F e

∗N) ⊆ N).

Proof. Since φ is non-zero and M is rank-1, φ is generically surjective. Choose c ∈ R such
that

(i) φc : F e
∗Mc →Mc generates (HomR(F e

∗M,M))c as an F e
∗R-module.

(ii) cM ⊆ φ(F e
∗M)

(iii) Mc
∼= Rc and F e

∗Rc
∼= F e

∗Mc is a free Rc-module.

Condition (i) is possible because the map of F e
∗R-modules

〈φ〉F e
∗R → HomR(F e

∗M,M)

is generically surjective (since φ is non-zero) because HomR(F e
∗M,M) is a rank one F e

∗R-
module. Condition (ii) and (iii) are possible since M is rank-one.

Suppose now that N ⊆ M is a φ-stable submodule. Our immediate goal is to show that
Nc = Mc

∼= Rc. Choose a prime q ∈ SpecRc, it is enough to show that Nq = Mq
∼= Rq.

Choose 0 6= n ∈ Nq and choose l � 0 such that F le
∗ n /∈ q · F le

∗ Mq = F l
∗(q

[pe]Rq). By
hypothesis, F le

∗ Mq is a free Rq-module, so that F l
∗(Mq/q

[pe]) is also free as an R/q-module of
the same rank. Choose elements a2, . . . ak ∈ Mq such that the images of a1 = n, a2, . . . , ak
form a basis for F le

∗ Mq/q
[pe] as an Rq/q-module. We have a map γ : ⊕iaiR→ F≤∗ Mq.

By Nakayama’s lemma, γ is surjective. But it is a surjective map between free modules of
the same rank, so it is also injective. Therefore, a1, a2, . . . , ak form a basis for F le

∗ Mq/q
[pe] over

Mq. In particular, by projecting onto the first coordinate, there exists a map ψ : F le
∗ Mq →Mq

such that ψ(F le
∗ nRq) = Mq (notice that F le

∗ nRq is not the summand generated by n, but it
contains it). Thus ψ(F le

∗ Nq) = Mq. However, ψ( ) = φl(d · ) by (i) which implies that
Mq ⊇ Nq ⊇ φl(F le

∗ Nq) = Mq also.
Because Nc = Mc, we know that cnM ⊆ N for some n > 0. We will show that n = 2

works. Choose l� 0 such that ple ≥ n+ 1. Then

c2M ⊆ cφl(F le
∗ M) = φl(F le

∗ c
pleM) ⊆ φl(F le

∗ c
nM) ⊆ φl(F le

∗ N) ⊆ N

as desired. We call the element c2 a test element for (M,φ).
Finally, we construct τ(M,φ).

τ(M,φ) :=
∑
l≥0

φl(F le
∗ c

2M)
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It is certainly non-zero, and it is contained in any φ-stable N by construction. This completes
the proof. �
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