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1. Deformations of F -split and rational singularities.

One very fundamental property of rational singularities is the fact that they behave well
in families. In fact, one also has the (a-priori) more general statement. We will prove it
because eventually we will try to mimic it in characteristic p > 0.

First we need a finer version of resolution of singularities.

Definition 1.1. With X a reduced scheme and Z ⊂ X any scheme (reduced or not), we

say that a resolution of singularities π : X̃ → X is a log resolution of Z ⊆ X if in addition
we assume.

• (i) IZ · OX̃ is a invertible sheaf. In other words, it is equal to OX̃(−G).
• (ii) exc π ∪ Supp(G) is a divisor with simple normal crossings.

Remark 1.2. Log resolutions also exist in characteristic zero. Again, they also may be taken
to satisfy the following properties.

• (a) π is projective, in other words, it is the blow-up of some (horrible) ideal.
• (b) π is an isomorphism on X \ (Sing(X) ∪ Z).
• (c) π is obtained by a sequence of blow-ups at smooth subvarieties (if X ⊆ Y and Y

is smooth, one may instead require that π is obtained by a sequence of blow-ups at
smooth points of Y ).

Theorem 1.3. [Elk78] Suppose that R is a local ring and that f ∈ R is a regular element
such that R/f has rational singularities, then R also has rational singularities.

Proof. Note that since R/f is rational, R/f and thus R is Cohen-Macaulay. Let π : X̃ →
X = SpecR be a resolution of X that is also simultaneously a resolution of H = SpecR/f .

Let H be the total transform of H (that is, H is the scheme defined by fOX̃) and let H̃

denote the strict transform of H. Note, there is a natural inclusion of schemes H̃ → H.
Consider the following diagram.

π∗ωH̃

��

0 // π∗ωX̃
×f

//
� _

ψ

��

π∗ωX̃ //
� _

ψ

��

π∗ωH //

φ

����

0

0 // ωX
×f

// ωX // ωH // 0

The bottom row is exact because H is Cohen-Macaulay. The top row is exact by Grauert-
Riemenschneider vanishing, [GR70]. The map labeled φ is surjective since the vertical com-
position from π∗ωH̃ is an isomorphism. It is then enough to show that ψ is surjective.
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Let C be the cokernel of ψ. The fact that φ is surjective means that C
×f

// C is surjective
by the snake lemma. But this contradicts Nakayama’s lemma, completing the proof. �

One can ask the slight different (a priori) question of whether rational singularities actually
deform in families. In other words, given a flat family X → C over a smooth curve C, such
that one fiber has rational singularities, do the nearby fibers also have rational singularities?
In order to answer this, we will first need a lemma.

Lemma 1.4. Suppose that X/k = k̄ has rational singularities and H ⊆ X is a general
member of a base-point free linear system (or is simply defined by a sufficiently general
equation) on X. Then H also has rational singularities.

Proof. Let π : X̃ → X be a resolution of singularities. Let H̃ denote the strict transform of

H (because H is general, H̃ = π−1(H)). Since the linear system on X lifts to a base-point

free linear system on X̃, H̃ is a general member of a base-point-free linear system on X̃ and
thus it is smooth. We will show that Rπ∗OH̃ = OH .

We work locally and assume that H = V (f) for some f ∈ R where X = SpecR. We first
claim that Lπ∗OH ∼= π∗OH = OH̃ , but this is easy since we have the short exact sequence

0→ OX → OX → OH → 0.

Since the first two terms have trivial Lif ∗ for i > 0, so does OH = R/f . Thus,

Rπ∗OH̃ ∼= Rπ∗Lπ
∗OH ∼= Rπ∗(OX̃⊗Lπ

∗OH) ∼= (Rπ∗OX̃)⊗OH ∼= OX⊗OH ∼= OH ,

as desired. �

Corollary 1.5. If f : X → C is a proper family over a curve C and a fiber f−1(c) has
rational singularities, then so do the nearby fibers.

Proof. By Elkik’s result, X has rational singularities near f−1(c). Choose an open set U ⊆ X
containing f−1(c) to be such that U has rational singularities. Let Z = X \ U . Then f(Z)
is a set of points of C (it is closed, and doesn’t contain c ∈ C). A general element of C will
give a general fiber of X and that fiber will be a general element of U . Thus that fiber will
have rational singularities. �

In this section, we’ll point out that F -split singularities need not be normal, or Cohen-
Macaulay (even when they are normal). We’ll also show that they don’t deform. It is
this failure of deformation that will lead us to the right variant of rational singularities in
characteristic p > 0.

We’ve already seen that F -split singularities need not be normal (although they are pretty
close to normal since they are always weakly normal). The simplest example is k[x, y]/(xy)
which is F -split by Fedder’s criterion by not normal.
F -split singularities need not be Cohen-Macaulay either. For example, k[x, y, u, v]/((x, y)∩

(u, v)) is F -split (this can be verified either using Fedder’s criterion or the gluing methods
we used for 1-dimensional varieties). Of course, this example is not normal and so one might
hope for an example of a F -split normal singularity that is not Cohen-Macaulay. We provide
one here.

We’ll now look at the characteristic p > 0 situation, but first we need to have a brief
discussion about reflexive rank one sheaves.
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Suppose that X is normal and integral and that D is an integral Weil divisor on X. Then
OX(D) = {f ∈ K(X)| div(f) + D ≥ 0}. This sheaf is rank one (clearly) and reflexive.
Reflexive in this case means one of the following equivalent definitions. A sheaf M on X is
reflexive if:

• M ∗∗ := H omOX (H omOX (M ,OX),OX) ∼= M via the natural map. Equivalently...
• M is torsion free and for any open set i : U ⊆ X such that X \ U has codimension

2 (or more), i∗M |U = M .

Remark 1.6. The second condition allows us to treat Weil divisors like Cartier divisors by
setting U = reg(X). Generally speaking, OX(D)⊗OX(F ) 6= OX(D + F ) but up to double-
dual ( ∗∗), it is true. Furthermore, for any such U , the operation i∗ induces an equivalence
of categories between reflexive sheaves on U and reflexive sheaves on X.

Explicitly, a map of reflexive sheaves is an isomorphism if and only if it is an isomorphism
in codimension 1.

Lemma 1.7. If X is as above and F -finite, then a torsion-free sheaf M is reflexive if and
only if F e

∗M is OX-reflexive.

Proof. Choose U ⊆ X such that X \U has codimension at least 2, U is regular, and also such
that M |U is locally free (X is normal, so M is already locally free at every codimension
1 point, whose stalks are PIDs). This also implies that F e

∗M |U is also locally free as an
OU -module since F e

∗OU is a locally free OU -module. Now, F e
∗M is OX-reflexive if and only

if i∗(F
e
∗M |U) ∼= F e

∗M . But that is clearly equivalent to i∗(M |U) ∼= M which is the same
thing as saying that M is reflexive. �

We now turn to the question of whether F -split singularities deform. We consider the
following situation. Suppose that R is a local ring and f ∈ R is a regular element. If R/f
is F -split, when can we conclude that R is F -split? The easiest approach would be to show
that every map φ : F e

∗ (R/f) → R/f extends to a map φ̄ : F e
∗R → R. So we have to ask

ourselves whether this is the case. We will show it is the case when R is Gorenstein, and
show it is not the case when R is not Gorenstein (even if R is Cohen-Macaulay and normal).

Lemma 1.8 is also closely related to the fact that the set of Frobenius actions on Hd
m(R)

is generated by the natural Frobenius action F e : HdimR
m (R)→ HdimR

m (R); see [LS01].

Lemma 1.8. Suppose that R is an F -finite Gorenstein local ring. By dualizing the natural
map G : R→ F e

∗R (apply HomR( , ωR)), we construct the map

Ψ : F e
∗ωR → ωR

By fixing any isomorphism of ωR with R (which we can do since R is Gorenstein), we obtain
a map which we also call Ψ,

Ψ : F e
∗R→ R.

This map Ψ is an F e
∗R-module generator of HomR(F e

∗R,R).

Proof. First note that the choices we made in the setup of the lemma are all unique up to
multiplication by a unit. Therefore, these choices are irrelevant in terms of proving that
Ψ is an F e

∗R-module generator. Suppose that φ is an arbitrary F e
∗R-module generator of

HomR(F e
∗R,R), and so we can write Ψ( ) = φ(d · ) for some d ∈ F e

∗R. Using the same
isomorphisms we selected before, we can view φ as a map F e

∗ωR → ωR. By duality for a
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finite morphism, we obtain φ∨ : R → F e
∗R. Note now that G( ) = d · φ∨( ). But G sends

1 to 1 which implies that d is a unit and completes the proof. �

Before continuing we need the following observation.

Lemma 1.9. Given an effective Weil divisor D in a normal affine scheme X = SpecR, the
maps φ : HomOX (F e

∗OX ,OX) which are compatible with D exactly coincide with the image
of

H omOX (F e
∗OX((pe − 1)D),OX)→H omOX (F e

∗OX ,OX).

Proof. Suppose we have a φ ∈ HomOX (F e
∗OX ,OX) compatible with D. In other words,

φ(F e
∗OX(−D)) ⊆ OX(−D). Twisting by OX(D). �

We now prove our desired extension result. A similar argument (involving local duality)
was used in the characteristic p > 0 inversion of adjunction result of [HW02, Theorem 4.9].

Proposition 1.10. Suppose that X is normal and D ⊆ X is an effective Weil divisor which
is also normal. Further suppose that D is Cartier in codimension 2 and that (pe−1)(KX+D)
is Cartier. Then the natural map of F e

∗OX-modules:

Φ : H omOX (F e
∗OX((pe − 1)D),OX)→H omOD(F e

∗OD,OD).

induced by restriction is surjective.

Proof. The statement is local so we may assume that X = SpecR where R is the spectrum
of a local ring. The module H omOX (F e

∗OX((pe − 1)D),OX) ∼= F e
∗OX((1 − pe)(KX + D))

which is isomorphic to F e
∗OX = F e

∗R because we restricted to the local setting.
Thus the image of Φ is cyclic as an F e

∗OD-module which implies that the image of Φ
is a reflexive F e

∗OD-module. Therefore, it is sufficient to prove that Φ is surjective at the
codimension one points of D (which correspond to codimension two points of X). We now
assume that X = SpecR is the spectrum of a two dimensional normal local ring and that
D is a Cartier divisor defined by a local equation (f = 0). Since D is normal and one
dimensional, D is Gorenstein, and so X is also Gorenstein.

Consider the following diagram of short exact sequences:

0 // R

1 7→fpe−1

��

×f
// R

17→1
��

// R/f //

17→1
��

0

0 // F e
∗R

F e∗×f
// F e
∗R // F e

∗ (R/f) // 0.

Apply the functor HomR( , ωR) and note that we obtain the following diagram of short
exact sequences.

0 // ωR
×f

// ωR // ωR/f ∼= Ext1
R(R/f, ωR) // 0

0 // F e
∗ωR

α

OO

F e∗×f
// F e
∗ωR

β

OO

// F e
∗ωR/f

∼= Ext1
R(F e

∗ (R/f), ωR)

δ

OO

// 0

The sequences are exact on the right because R is Gorenstein and hence Cohen-Macaulay.
Note that by Lemma 1.8, we see that δ and α can be viewed as F e

∗R-module generators
of the modules HomR/f (F

e
∗ (R/f), R/f) ∼= HomR/f (F

e
∗ωR/f , ωR/f ) and HomR(F e

∗R,R) ∼=
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HomR(F e
∗ωR, ωR) respectively. Furthermore, the map labeled β can be identified with α ◦(

F e
∗ (×fp

e−1)
)
.

But the diagram proves exactly that the map β ∈ HomR(F e
∗R,R) restricts to a generator

of HomR/f (F
e
∗ωR/f , ωR/f ) which is exactly what we wanted to prove. �

Remark 1.11. If D is not assumed to be normal but instead assumed to be S2 and Gorenstein
in codimension 1, the proof goes through without change.

Corollary 1.12. If R is normal and Q-Gorenstein with index not divisible by p > 0 and
R/f is normal and F -split, then R is also F -split.

What happens if we relax these normal and Q-Gorenstein conditions?

Example 1.13. [Fed83] [Sin99] Consider R = k[u, v, y, z]/(uv, uz, z(v − y2)). Note that
(uv, uz, z(v − y2)) = ((u, z) ∩ (v, z)) ∩ (u, v − y2) and so R is not normal. We will show it is
not F -pure but that there is a hypersurface through the origin that is F -pure.

First, if it was F -pure, then there would be a splitting φ : F e
∗R→ R which would induce a

splitting of k[u, v, y, z] (by Fedder’s Lemma) and also be compatible with the minimal primes
of R, (u, z), (v, z) and also (u, v − y2). All of those rings are F -split, and so that isn’t a
problem. However, (v, z) + (u, v − y2) = (u, v, y2, z) isn’t reduced so this is impossible.

Now, consider R/y = k[u, v, z]/(uv, uz, zv) which is F -pure.

Of course, you may view this as cheating since R is not normal (although it is still Cohen-
Macaulay). One can construct normal examples as well, see [Sin99, Theorem 1.1]. We’re
going to abandon F -splitting for a little while now, and we’ll consider the following condition.

Lemma 1.14. If R is an F -split local ring, then the natural map Ψ : F∗ωR → ωR of Lemma
1.8 is surjective. Furthermore, if R is quasi-Gorenstein, then the converse also holds.

Proof. If R is F -split, we have a composition which is an isomorphism R → F∗R → R.
Dualizing this gives us

ωR F∗ωR
Ψ

oo ωRoo

which is also an isomorphism. Thus Ψ is surjective.
Conversely, if Ψ is surjective and R is quasi-Gorenstein, then ωR ∼= R and we have a

surjective map Ψ : F∗R→ R. �

Definition 1.15. [Fed83] A Cohen-Macaulay ring R is called F -injective if the natural map
Ψ : ωR → ωR is surjective.

Remark 1.16. You might ask why he called this condition F -injective and not F -surjective?
It is because Ψ is the local dual of the Frobenius map F : Hd

m(R) → Hd
m(R) on local

cohomology and Ψ is surjective if and only if that map is injective. More generally, in the
non-Cohen-Macaulay case, he said that R was F -injective if hi(F∗ω

q
R)→ hi(ω

q
R) is surjective

for every i.

Furthermore, we have the following.

Proposition 1.17. [Fed83] Suppose that R is Cohen-Macaulay and R/f is F -injective.
Then R is F -injective.
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Proof. Consider the following diagram of short exact sequences:

0 // R

1 7→fpe−1

��

×f
// R

17→1
��

// R/f //

17→1
��

0

0 // F e
∗R

F e∗×f
// F e
∗R // F e

∗ (R/f) // 0.

Apply the functor HomR( , ωR) and note that we obtain the following diagram of short
exact sequences.

C
η

// D // 0

0 // ωR

OO

×f
// ωR

OO

// ωR/f ∼= Ext1
R(R/f, ωR)

OO

// 0

0 // F e
∗ωR

α

OO

F e∗×f
// F e
∗ωR

β

OO

// F e
∗ωR/f

∼= Ext1
R(F e

∗ (R/f), ωR)

δ

OO

// 0

where C and D are the cokernels of α and β respectively. Thus, C = ωR/ΨR(F e
∗ωR) and

D = ωR/ΨR(F e
∗ f

pe−1ωR)). We have a natural surjective map

µ : D = ωR/Ψ(F e
∗ f

pe−1ωR))→ ωR/Ψ(F e
∗ωR)) = C

and we see that µ ◦ η : C → C is simply multiplication by f . But η surjects and thus so
does µ ◦ η. But this contradicts Nakayama’s lemma. �

Because of this, Fedder suggested that normal, Cohen-Macaulay and F -injective might be
a closer match to rational singularities than F -purity. There was some evidence for this. In
particular, Fedder showed that certain classes of hypersurfaces (defined over Z) had rational
singularities over C if and only if for all sufficiently large p > 0, the singularity viewed
modulo p had F -pure (equivalently, F -injective) singularities. Notice that this doesn’t allow
x3 +y3 +z3 because that does not have F -pure singularities for p = 2 mod 3. Elkies has since
shown that for cones over planar elliptic curves (none of which have rational singularities),
they are supersingular (and thus ordinary) for infinitely many p.
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