
F -SINGULARITIES AND FROBENIUS SPLITTING NOTES
9/17-2010

KARL SCHWEDE

We also state Grothendieck duality.

Theorem 0.1. [Har66] Given a map of schemes f : Y → X of finite type, there exists a
functor f ! : Db

coh(X)→ Db
coh(Y ). If furthermore, f is proper then one has the following:

(i) RH om
q
OX

(Rf∗F
q
,G

q
) ∼= Rf∗RH om

q
OY

(F
q
, f !G

q
) where F

q
,G

q ∈ Db
coh(X).

(ii) f !ω
q
X is a dualizing complex for Y (denoted now by ω

q
Y ).

(iii) If f : Y → X is a finite map (for example, a closed immersion), f ! is identified with
RH omOX

(f∗OY , ) (viewed then as a module on Y ).

We will also use Kodaira vanishing and a relative version, Grauert-Riemenschneider van-
ishing.

Theorem 0.2 (Kodaira Vanishing). Suppose that X is a smooth variety of characteristic
zero and L is an ample line bundle on X. Then H i(X,ωX ⊗L ) = 0 for i > 0 or dually,
H i(X,L −1) = 0 for i < dimX.

Theorem 0.3. [GR70] Suppose that π : X̃ → X is a proper map of algebraic varieties in

characteristic zero with X̃ smooth. Then Riπ∗ωX̃ = 0 for i > 0.

Remark 0.4. Both of these theorems FAIL in characteristic p > 0.

0.1. The Cohen-Macaulay and Gorenstein conditions for section rings. To illus-
trate these previous notions, let us consider section rings of projective varieties with respect
to ample divisors. Throughout this section, X will denote a smooth1 projective variety over
an algebraically closed field of characteristic 0 also with canonical divisor KX . Let A be a
(very (very)) ample divisor on X (ample is actually fine, but it is harmless to make it more
ample for the purposes of the examples in this section).

Let S = ⊕H0(X,OX(nA)) denote the section ring of S with respect to A and suppose
that m = S+ is the irrelevant ideal. If Y = SpecS, then U = SpecS \ V (m) is a k∗-bundle
over q : U → X (far from the trivial bundle though). If S is generated in degree one, this
is an easy exercise, for the more general case see for example [HS04]. We use i : U → Y to
denote the inclusion.

Thus given any divisor D on X, ⊕H0(X,OX(D + nA)) is the sheaf corresponding to a
divisor on Y . In fact, it corresponds to the divisor q∗D extended in the unique way over the
irrelevant point of Y (in other words, it corresponds to i∗q

∗D). We use DY to denote this
corresponding divisor on Y and make the easy observation that n(DY ) = (nD)Y . What’s
more important, is that ⊕H0(X,OX(KX + nA)) IS the canonical module ωY of Y (this
basically follows from what we’ve described since q is just a k∗-bundle).

1Large parts of the section also work if X is normal, and all the results of the section hold if one assumes
that X has rational singularities.
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Let us first consider what this means for the quasi-Gorenstein and Q-Gorenstein condi-
tions. Since ωY = OY (lKY ) is a graded S-module, it will be free if and only if OY (lKY ) is
a locally free graded module (which means if and only if OY (nKY ) is a line bundle). The
graded line bundles on S are just S with a shift. In summary

Lemma 0.5. S is quasi-Gorenstein if and only if KX ∼ nA for some integer n (possibly
equal to zero). Furthermore, S is Q-Gorenstein if and only if mKX ∼ nA for some integers
n,m not both zero.

Proof. We first prove the second statement which is slightly harder than the first statement.
If S is Q-Gorenstein, then ⊕kH0(X,OX(mKX +kA)) is isomorphic to S(n) for some integer
n. But OX(mKX) is completely determined as an OX-module by ⊕kH0(X,OX(mKX +kA))
and if it is isomorphic to S(n) = ⊕kH0(X,OX(nA+ kA)), then nA ∼ mKX as desired. The
converse simply reverses this. �

Corollary 0.6. If X is such that KX ∼ 0, then for any section ring S, S is quasi-Gorenstein.

Remark 0.7. We also see that it is possible that for some A the section ring is Q-Gorenstein,
while for other A the section ring of the same variety is not Q-Gorenstein. Furthermore, there
are varieties with no section ring (with respect to an ample divisor) being Q-Gorenstein.

Using something called local duality, the Cohen-Macaulay condition can also be translated
as follows (even for non-graded local rings).

Lemma 0.8. Suppose that (S,m) is a local ring. Then

• S is Cohen-Macaulay if and only if H i
m(S) = 0 for i < dimS.

Remark 0.9. Literally, local duality says that the complex RΓm(S) is dual to the complex
ω

q
S .

If we are working with a normal section ring as before, then H0
m(S) = H1

m(S) = 0 (the
first follows from the fact that S is reduced, the second from the fact that S is normal, see
for example [Har77, Chapter III, Exercise 3.4]). Therefore, to show the Cohen-Macaulay
condition, we only need to show the vanishing of the higher H i

m(S) for 1 < i ≤ dimS − 1 =
dimX. As noted before, (H i

m(S))n = H i−1(X,OX(n)) and so we have the following:

Lemma 0.10. A section ring S of a projective variety X is Cohen-Macaulay if and only if
Hj(X,OX(n)) = 0 for 0 < j < dimX and all n ≥ 0.

Proof. The Cohen-Macaulay condition certainly implies the vanishing by the discussion
above. Furthermore Hj(X,OX(n)) = 0 for n < 0 by Kodaira-vanishing (at least if X is
smooth although Kodaira vanishing also holds for rational singularities) which proves the
converse. �

One should thus note that it is possible that some section rings of a projective variety
can fail to be Cohen-Macaulay, while others are Cohen-Macaulay (take a very high Veronese
embedding). In particular, X has a section ring that is Cohen-Macaulay if and only if
Hj(X,OX) = 0 for all 0 < j < dimX.

Watanabe’s definition of rational singularities also can be restated as follows. Recall that
he said that S has rational singularities if and only if S is Cohen-Macaulay and a(S) < 0
where a(S) := max{n|(HdimS

m (S))n 6= 0}.
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Lemma 0.11. A section ring S of a projective variety X has rational singularities if and
only if Hj(X,OX(n)) = 0 for 0 < j ≤ dimX and all n ≥ 0.

Again, it is possible for some section rings to have rational singularities while other section
rings do not have rational singularities.

We conclude with an example of a ring that is quasi-Gorenstein but not Cohen-Macaulay.

Example 0.12. Suppose that X is an Abelian surface (for example, the product of two
elliptic curves). The irregularity of X is defined to be dimH1(X,OX) and it an exercise in
Hartshorne ([Har77, Chapter II, Section 8, Exercise 8.3(c)]) which shows that the irregularity
is 2 (and in particular, non-zero).

0.2. A definition of rational singularities. Now we define rational singularities as well
as resolutions of singularities.

Definition 0.13. Let X be a reduced scheme of (essentially) finite type over a field. We

say that a map π : X̃ → X is a resolution of singularities if the following conditions are
satisfied:

• (1) X̃ is [regular / smooth], these notions agree in characteristic zero.
• (2) π is proper.
• (3) π is birational.

Remark 0.14. Resolutions of singularities exist in characteristic zero, [Hir64], [BM97], [BEV05],
[W lo05], [Kol07]. Furthermore, there always exists a resolution satisfying the following prop-
erties.

• (a) π is projective, in other words, it is the blow-up of some (horrible) ideal.
• (b) π is an isomorphism on the locus where X is regular.
• (c) π is obtained by a sequence of blow-ups at smooth subvarieties (if X ⊆ Y and Y

is smooth, one may instead require that π is obtained by a sequence of blow-ups at
smooth points of Y ).
• (d) The reduced exceptional locus of π is a divisor with simple normal crossings (it

looks analytically like k[x1, . . . , xn]/(some product of the xi)).

Now we define rational singularities.

Definition 0.15. A reduced local ring (R,m) of characteristic zero is said to have rational

singularities if, for a given (equivalently any) resolution of singularities π : X̃ → X, we have
the following two conditions.

(i) π∗OX̃ = OX (in other words, X is normal)
(ii) Riπ∗OX̃ = 0 for i > 0.

Proposition 0.16. If X has rational singularities and π : X̃ → X is a resolution of singular-

ities, then for any line bundle (or vector bundle) L on X, we have H i(X,L ) = H i(X̃, π∗L ).
In other words, cohomology of line bundles can be computed on a resolution.

Proof. By the projection formula, Rjπ∗L = 0 for all j > 0. The statement then follows
from the E2 degeneration of the associated spectral sequence. �
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1. Other characterizations of rational singularities

Reinterpreting the rational singularities condition in the derived category gives us the
following.

Definition 1.1. If X is a singular variety and π : X̃ → X is a resolution, then X has
rational singularities if and only if OX → Rπ∗OX̃ is an isomorphism.

We will now apply Grothendieck duality to this definition. Consider the mapOXtoRπ∗OX̃ .
Apply the duality functor RH omOX

( , ω
q
X). This gives us a map

Rπ∗ω
q̃
X
∼= RH omOX

(OX̃ , π
!ω

q
X) ∼= RH omOX

(Rπ∗OX̃ , ω
q
X)→ RH omOX

(OX , ω
q
X) ∼= ω

q
X .

Now, because X̃ is smooth, it is Gorenstein so ω
q̃
X

= ωX̃ [dimX]. Grauert-Riemenschneider

vanishing tells us then that Riπ∗ω
q̃
X

= Ri+dπ∗ωX̃ = 0 for i+d 6= 0 or equivalently for i 6= −d.

If X has rational singularities, we immediately see that hiω
q
X = Riπ∗ω

mydot

X̃
= 0 for i 6= −d.

Thus X is Cohen-Macaulay. Conversely, we also obtain the following characterization of
rational singularities due to Kempf.

Lemma 1.2. [KKMSD73] With the notation as above, X has rational singularities if and
only if X is Cohen-Macaulay and π∗ωX ∼= ωX .

Remark 1.3. One always has an inclusion π∗ωX̃ ⊆ ωX so in general, one only needs to check
the surjectivity.

It is a standard exercise to show that π∗ωX = ωX in a regular ring (all the coefficients in
the relative canonical divisor are positive). Once you have this, you see that the definition
of rational singularities is independent of the resolution.

We’ll do a standard example of rational (and non-rational) singularities in the graded case,
then we’ll explore some consequences of Kempf’s criterion for rational singularities.

Example 1.4. Consider the (graded) ring R = k[x, y, z]/(xn + yn + zn). We’ll set Y =
Spec k[x, y, z] with closed subscheme X = SpecR. We notice that the singularities of X can
be resolved by blowing-up the cone-point of X (maximal ideal of R) which is the origin of

Y , yielding π : Ỹ → Y (with exceptional P2 = E) which restricts to π : X̃ → X (with
exceptional curve C). Because X is a hypersurface it is Cohen-Macaulay, and so we need
to show that π∗OX̃(KX̃) ∼= OX(KX). One can always assume that KX and KX̃ agree where
π is an isomorphism and furthermore, that OX(KX) ∼= OX and OY (KY ) = OY since X is
a hypersurface in Y = An. Thus, we need to compute KX̃/X = KX̃ = Kπ|

X̃
the relative

canonical divisor of π|X̃ . If this divisor is effective, then π∗OX̃(KX̃) = OX (what sections of
OX have poles along a divisor at a point). If it’s not effective, then π∗OX̃(KX̃) ( OX since
now we are requiring sections to vanish to some order at the maximal ideal.

We know the relative canonical divisor of π though, it’s simplyOỸ (2E) by [Har77, Chapter

II, Exercise 8.5(b)]. By the adjunction formula, (2E + X̃)|X̃ = (KY + X̃)|X̃ = KX̃ . On the

other hand, we know that (nE + X̃)|X̃ = π∗X|X̃ ∼ 0 on X̃. Thus, KX̃ ∼ (2 − n)C since
E|X̃ = C.

As an easy consequence, we see that X has rational singularities if and only if n = 1, 2 and
otherwise does not have rational singularities. Recall that the same singularity had F -split
singularities if and only if n = 1 mod 3.
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Remark 1.5. You might ask where the adjunction formula comes from? If you have a hy-
persurface H on a Cohen-Macaulay variety X (if X is normal, the same statement holds
because one can restrict to the Cohen-Macaulay locus which agrees with X outside a set of
codimension 3), then we have a short exact sequence

0→ OX(−H)→ OX → OH → 0.

Applying RH omOX
( , ω

q
X) gives us

ω
q
H = RH omOX

(OH , ω
q
X)→ ω

q
X → ω

q
X(H)→ ...

If we take cohomology, we get

0→ ωX → ωX(H)→ ωH → h− dimX+1(ω
q
X) = 0

If X is also normal, this is exactly the statement KX |H = KH .

First, we look at Boutot’s theorem (remember, we already showed that a summand of an
F -split ring is always F -split).

Theorem 1.6. [Bou87] If R ⊆ S is an extension of normal domains such that R is a direct
sum of S, then if S has rational singularities, so does R.

Proof. We first claim that there exists resolutions of singularities α : X̃ → X = SpecX and

β : Ỹ → Y = SpecS making a commutative diagram:

X̃

α

��

Ỹ
γ

oo

β

��

X Y
δ

oo

To see this, first resolve the singularities of X by a blow-up of an ideal, and then blow-up
the extension of that ideal on Y (giving Y ′ → Y , that will give you a digram) and then
further resolve the singularities of Y ′. If we write down the derived category version of this
diagram, we get

Rα∗OX̃ // Rβ∗OỸ

OX

OO

// OY

f

OO

This gives us the following composition:

OX → Rα∗OX̃ → Rβ∗OỸ ∼= OY → OX
which is an isomorphism. Thus OX → Rα∗OX̃ splits (has a left/right inverse) in the derived
category. One should note that Rβ∗OỸ (or even S) is not necessarily in Db

coh(X), simply
because the map R ⊆ S may not be finite / proper. They do live in Db(X) though. However,
Db

coh(X) is a full subcategory of Db(X) (see [Har66]) so we may still assume our splitting
lives in Db

coh(X).
Therefore, our result follows once we prove the following lemma.

Lemma 1.7. [Kov00] With notation as above, if OX → Rα∗OX̃ splits in the derived category,
then X has rational singularities.
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Proof. We will use Kempf’s criterion for rational singularities. By assumption, we have a
composition (which is an isomorphism)

OX → Rα∗OX̃ → OX
Applying RH omOX

( , ω
q
X) we obtain the following composition (which is also an isomor-

phism in the derived category)

RH omOX
(OX , ω q

X) = ω
q
X RH omOX

(Rα∗OX̃ , ω
q
X)oo ω

q
X

oo

Rα∗RH omO
X̃

(Rα∗OX̃ , ω
q̃
X

)

Rα∗ω
q̃
X

α∗ωX̃ [dimX]

Thus h− dimX+iω
q
X = 0 for i 6= 0, which implies that X is Cohen-Macaulay. On the other

hand, taking cohomology at the − dimX place gives us

ωX ← α∗ωX̃ ← ωX

where the left-most arrow is the natural inclusion (which is always injective). The fact that
the composition is an isomorphism implies that the left-most arrow is also injective, and
thus an isomorphism. �

�
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