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1. Kodaira-type vanishing in characteristic p > 0

First we recall Kodaira’s vanishing theorem.

Theorem 1.1. [Kod53] Suppose that X is a smooth projective variety of dimension n, char-
acteristic zero, and H is an ample divisor on V , then

H i(X,OX(−H)) = 0

for i = 0, 1, . . . , n − 1. Dually, H i(X,ωX(H)) = 0 for i > 0 (this dual version is equivalent
as long as the variety is Cohen-Macaulay, which holds for example for normal surfaces).

This was known previously for surfaces, [Zar95]. It fails in characteristic zero for arbitrarily
singular varieties (although it holds for normal surfaces), see for example [AJ89].

This result is also false in characteristic p > 0. We begin with Mumford’s example (which
is singular).

Example 1.2. [Mum67, Example 6] Suppose that X0 is a normal surface in characteristic
p > 0 with an element α ∈ H1(X0,OX0) such that F (α) = 0 (for example, X = E × P1

where E is a supersingular elliptic curve).
Suppose that H0 is an irreducible hyperplane section of X0 and let L0 = OX0(H0). Choose

a open covering Ui of X0 that principalizes H0 and represent α as {αij} in Čech cohomology
and choose gi ∈ Γ(Ui,OX0) so that αpij = gi − gj. Suppose that H0|Ui

= V (hi) for some
hi ∈ Γ(Ui,OX0). Define an extension L of K(X) by adjoining all roots of the equations:

zpi − h
p
i zi = gi

Note that then gi − zpi = −hpi zi. Define π : X → X0 to be the normalization of X0 inside L,
and set H = π∗H0 (note, H is ample since π is finite).

Claim 1. π∗α is contained in the subspace H1(X,OX(−H)) ⊆ H1(X,OX) (note that
H0(X,OX) surjects onto H0(H,OH)).

Proof. We set Vi := π−1(Ui). Now, zi ∈ Γ(Vi,OX) since zi satisfies a monic equation with
coefficients in H0(X0,OX0). This implies that

π∗α = [αij]

= [αij − zi + zj]
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so that (
αij − zi + zj

hi

)p
=

αpij − z
p
i + zpj

hpi

=
(gi − gj)− zpi + zpj

hpi

=
(gi − zpi )− (gj − zpj )

hpi
= −zi + (hj/hi)

pzj

∈ Γ(Vi ∩ Vj,OX)

But this implies that
[
αij−zi+zj

hi

]
∈ Γ(Vi∩Vj,OX) which itself implies that α = [αij−zi−zj] ∈

Γ(Vi ∩ Vj,OX(H)) and the claim follows. �

The result then follows by the following lemma.

Lemma 1.3. [Mum67, Lemma 5] Let π : X ′ → X be a finite surjective morphism of normal
varieties over k = k such that K(X) ⊆ K(X ′) is separable. Suppose that α ∈ H1(X,OX) is
such that F (α) = 0 and 0 = π∗α ∈ H(X ′,OX′). Then α = 0.

Proof. As before, represent α as {αij} in Čech cohomology for some cover Ui of X. Again
we have αpij = gi − gj with gi ∈ Γ(Ui,OX0). Because π∗(α) = 0 there exists functions

hi ∈ Γ(π−1(Ui),OX′) such that π∗(αij) = hi − hj. Therefore,

hpi − π∗(gi) = hpj − π∗(gj).
Thus there exists a β ∈ Γ(X ′,OX′) such that f ∗(gi) = hpi + β for all i. This implies that
π∗(gi) ∈ K(X ′)p, which implies that gi ∈ K(X)p for all i since K(X) ⊆ K(X ′) is separable.
Write gi = fpi , fi ∈ K(X), and then since X is normal, we have that fi ∈ Γ(Ui,OX). Then,
aij = fi − fj since apij = gi − gj. This implies α = 0 as desired. �

Remark 1.4. While there is no guarantee that X is smooth,

We now discuss Kawamata-Viehweg vanishing in positive characteristic.

Theorem 1.5. [Kaw82], [Vie82] Suppose that X is a normal projective algebraic variety
over an algebraically closed field of characteristic zero, B an effective Q-divisor on X and
D a Cartier (or Q-Cartier integral) divisor. Assume that (X,B) is Kawamata log terminal
and that H = D − (KX +B) is ample. Then H i(X,D) = 0 holds for an i > 0.

We will show that many varieties fail this, at least if they are constructed out of bizarre
curves, we follow [Xie07].

Definition 1.6. [Tan72] Suppose that C is a smooth curve and f ∈ K(C). Define

n(f) = degb1
p
D(df)c.

Here D(df) is the divisor associated to df ∈ ωC . The Tango invariant of C is defined to be

n(C) = max{n(f)|f ∈ K(C), f /∈ (K(C))p}.
A curve C is called a Tango curve if n(C) > 0.
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Before continuing, I’d like to discuss why Hiroshi Tango considered this notion, we will
not include the proof at this time.

Theorem 1.7. [Tan72] Let C be a curve of genus g > 0 with Tango invariant n(C), then:

(i) For any line bundle L such that degL > n(C), the Frobenius map H1(C,L −1) →
H1(C,F ∗L −1) is injective (dually, H0(C, (F∗ωC) ⊗L p) → H0(C, ωC ⊗L ) is sur-
jective).

(ii) If n(X) > 0, then there exists a line bundle M of degree n(C) such that the Frobenius
map H1(X,M−1)→ H1(X,F ∗M−1) is not injective.

Remark 1.8. The Tango invariant of P1 is −1.

Example 1.9. [Tan72] The following curve x3y + y3z + z3x = 0 in P2 is a genus 3 smooth
Tango curve in characteristic 3. The partial derivatives are z3, x3, y3 and so it is indeed
smooth. Choose f = (x − y)/z ∈ K(C). At the point (0, 0, 1), we see that f vanishes to
order 1, and so f is not in K(C)3. One can show that

D(df) = −3(0, 0, 1)− 3(1, 0, 0) +
∑

αα3=α+1

λ(1− α,−1, 1) + other positive terms.

where λ ≥ 3. n(f) ≥ 1.

Assuming f /∈ (K(C))p, df 6= 0 so that D(df) ∼ KC and has degree 2g−2 where g = g(C)
is the genus of C. Also notice that n(C) ≤ b(2g − 2)/pc, thus n(C) > 0 implies that g > 1.
There are many examples of Tango curves.

We have the following two short exactly sequences (just like we explored in the proof of
Hara’s lemma):

0→ OC → F∗OC → B1 → 0

0→ B1 → F∗ΩC → ΩC → 0

Here B1 is the image of d : F∗OC → F∗ΩC .

Lemma 1.10. [Xie07] With notation as above let L be a divisor on C, then H0(C,B1(−L)) =
{df |f ∈ K(C), D(df) ≥ pL}. Furthermore, n(C) > 0 if and only if there exists an ample
divisor L on C such that H0(C,B1(−L)) 6= 0.

Proof. Twisting the second equation above by −L we get

0→ B1(−L)→ F∗(ΩC(−pL))→ ΩC(−L)→ 0.

Now, H0(C,ΩC(−pL)) = {ω ∈ ΩC |D(ω) ≥ pL}, so that

H0(C,B1(−L)) = {df |f ∈ K(C), D(df) ≥ pL}.

For the second statement, assume that n(C) > 0, thus there exists an f0 ∈ K(C) such
that n(f0) = degbD(df0)/pc > 0. Let L = bD(df0)/pc. Certainly degL > 0 and D(df0) ≥ pL
and so df0 ∈ H0(C,B1(−L)) 6= 0 as desired. The converse direction merely reverses this. �

Using Tango curves, Raynaud constructed a smooth counterexample to Kodaira vanishing
in each characteristic. These ideas have recently been further explored by Xie, and we have
the following theorem.
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Theorem 1.11. [Xie07] Suppose that C is a tango curve, then there exists a P1-bundle
f : X → C an effective Q-divisor B and an integral divisor D on X such that (X,B) is
KLT (in fact, B has SNC support with coefficients < 1) and H = D − (KX + B) is ample
but H1(X,D) = 0.

Proof. This is taken from [Xie07]. We choose a divisor L on C such that degL > 0 and
H0(C,B1(−L)) 6= 0. Set L = OC(L), we then obtain

0→ H0(C,B1(−L))→ H1(C,L −1)→ H1(C,L −p).

Choose α ∈ H0(C,B1(−L)) with image α ∈ H1(C,L −1) ∼= Ext1
C(L ,OC). Thus we obtain

an extension

0→ OC → E → L → 0.

Apply F ∗ and obtain

0→ OC → F ∗E → L p → 0

which corresponds to the extension class of F ∗α, but this class is zero...
Let f : X = P(E )→ C be the P1 bundle over C, with associated OX(1) and fiber G. The

surjection E → L → 0 induces a section σ : C → X by [Har77, IV, Prop 2.6] with image E.
Furthermore, f ∗OC = OX ∼= OX(1) ⊗ OX(−E) so that OX(E) = OX(1). We use the fact
the sequence above is split and then and obtain:

0→ OC → (F ∗E )⊗L −p → L −p → 0.

Thus we have the composition

H0(C,OC)→ H0(C, (F ∗E )⊗L −p)→ H0(C, Sp(E )⊗L −p) ∼= H0(X,OX(p)⊗ f ∗L −p).

Thus we have a section t ∈ H0(X,OX(p) ⊗ f ∗L −p) (corresponding to the image of 1).
Therefore, we have a curve C ′ on X with OX(C ′) ∼= OX(p)⊗ f ∗L −p.

Claim 2. We claim that C ′ is smooth and also that C ′ ∩ E = ∅.

Proof. We won’t work out the details, but only sketch some evidence. Certainly C ′.E =
(pE − p(degL)G).E = pE2 − p(degL) where E2 is the degree of E which is clearly degL.
Thus as long as C ′ is irreducible, the second claim is obvious.

In fact, E and C ′ both correspond to splittings onto distinct terms of the split exact
sequence

0→ OC → F ∗E → L p → 0.

compare with [Har77, Chapter V, Exercise 2.2]. �

Choose c a rational number satisfying 1/p < c < 1 such that cp /∈ Z. Set q = bcpc − 1,
and note that q ≥ 0. Set B = cC ′ and D = qE + f ∗(KC − qL). Then

H = D − (KX +B)

≡ (bcpc − 1)E + f ∗(KC − qL)−KX − cC ′

≡ (bcpc − 1)E + f ∗(KC − (bcpc − 1)L)− (−2E + f ∗KC − f ∗L)− c(pE − pf ∗ L)

≡ (bcpc+ 1− cp)E + (cp− bcpc)f ∗L.

In particular, E is relatively ample and thus H is also ample. Clearly (X,B) is KLT.
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Now, we need to show that H1(X,D) 6= 0. Now, D.G ≥ 0, thus by [Har77, Lemma 2.4],
R1f∗OX(D) = 0 and f∗OX(D) is locally free. Then

H1(X,D)

= H1(C, f∗OX(D))

= H0(C, (f∗OX(D))∨ ⊗ ωC)∨

= H0(C, (f∗OX(D − f ∗KC))∨)∨

= H0(C,OC(qE − qL)∨)∨

= H0(C, (Sq(E )∨ ⊗L q))∨.

Now L q is a quotient of Sq(E ), so L −q is a subsheaf of Sq(E )∨. Thus,

H1(X,D)∨ = H0(C, Sq(E )∨ ⊗L q) ⊇ H0(C,L −q ⊗L q) = H0(C,OC) = k

proving the theorem. �

Q. Xie also proves the following result:

Theorem 1.12. [Xie07] If there is a counter-example to the Kawamata-Viehweg vanishing
theorem on a ruled surface f : X → C, then either C is a Tango curve or all sections are
ample.

He also conjectures the following:

Conjecture 1.13. If there is a counter-example to the Kawamata-Viehweg vanishing theo-
rem on a normal projective surface X, then there exists a dominant rational map f from X
to a smooth projective Tango curve C.
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