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1. Criteria for F-splitting of varieties

Last time we proved the following.

Proposition 1.1. [BK05, Proposition 1.3.7] Let X be a nonsingular variety. Then the
following map η is an isomorphism. The map η

η : H omOX
(ωX , F∗ωX)→H omOX

(F∗OX ,OX)

is defined as follows: Working locally, fix a local generator ω for ωX,x. Furthermore, for
ψ ∈ H omOX,x

(ωX,x, F∗ωX,x) and f ∈ OX,x, we define η(ψ)f to be the ω coefficient of
T (fψ(ω)).

This is well defined and furthermore, we obtain the following commutative diagram

H omOX
(ωX , F∗ωX)

η
//

T
��

H omOX
(F∗OX ,OX)

eval at 1
��

H omOX
(ωX , ωX)

κ
// H om(OX ,OX)

where κ is the natural isomorphism.

Now, H omOX
(ωX , F∗ωX) ∼= F∗H omOX

(F ∗ωX , ωX) ∼= F∗ω
1−p
X . This yields a canonical

isomorphism:

α : H omOX
(F∗OX ,OX) ∼= F∗ω

(1−p)
X

Theorem 1.2. [BK05, Theorem 1.3.8] [MR85] The evaluation-at-1 map H omOX
(F∗OX ,OX)→

OX is identified the map

σ : F∗ω
(1−p)
X → OX

defined locally by

σ(f(dt1 ∧ . . . dtn)1−p) = S(f).

Therefore, φ ∈H omOX
(F∗OX ,OX) splits the Frobenius map if and only if σ(α(φ)) = 1.

Proof. The diagram in the previous proposition proves exactly the first claim, and the second
follows immediately. �

Corollary 1.3. For a smooth X, given φ ∈H omOX
(F∗OX ,OX), if φ is a splitting, then the

tp−1ω coefficient of α(φ) is equal to 1 for every point x ∈ X. For a general normal complete
X, φ ∈H omOX

(F∗OX ,OX) is a splitting if and only if the tp−1ω coefficient of α(φ) is equal
to 1 for some point x ∈ X
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Proof. The tp−1(dt1 ∧ . . . dtn)1−p-coefficient of α(φ) is the constant term of φ(1) in OX,x ⊆
k[[t1, . . . , tn]]. Thus if φ(1) = 1, this is just 1. For the complete case, we know that φ(1) is
an element of k = H0(X,OX), and so the tp−1(dt1∧ . . . dtn)1−p-coefficient of α(φ) is the only
term that matters. �

We now come to the main result of this section. An effective tool for determining if a

given φ ∈H omOX
(F∗OX ,OX) ∼= F∗ω

(1−p)
X is a splitting.

Theorem 1.4. [BK05], [MR85] Suppose that X is a normal complete variety of dimension

n. If there exists a s ∈ H0(X,ω
(−1)
X ) with associated divisor

D = Y1 + . . . Yn + Z

where Y1, . . . , Yn are prime divisors which intersect with SNC at a smooth closed point x ∈
X and Z is an effective divisor not containing x, then X is Frobenius split by a splitting

corresponding to sp−1 ∈ H0(X,ω
(1−p)
X ) up to a unit.

More generally, if s ∈ H0(X,ω
(1−p)
X ) is such that the divisor of s is (p−1)(Y1+· · ·+Yn)+Z

where the Y1 are SNC at a closed point x ∈ X and Z does not contain X, then the same
result holds.

Proof. At x ∈ X, suppose that each Yi is given by the vanishing of some ti ∈ OX,x. Then the

power series expansion of sp−1 is simply tp−1
1 . . . tp−1

n g(dt1 ∧ · · · ∧ dtn)1−p where g is a formal
power series not vanishing at the origin. In particular, the section φ ∈ HomOX

(F∗OX ,OX)
corresponding to sp−1 sends 1 to a non-zero constant in k. Multiplying by the inverse of that
constant gives us our desired result. �

Remark 1.5. It should be noted that the φ constructed above is compatible with all the Yi’s

and Z, since the ∆φ is exactly Y1 + · · ·+ Yn + Z = (p−1)
(p−1)

(Y1 + · · ·+ Yn + Z).

Corollary 1.6. Suppose that X is a complete n-dimensional variety in characteristic zero
and ∆ is a Q-divisor in characteristic zero such that ∆ = Y1 + . . . Yn + Z where the Yi are
prime divisors which intersect with SNC at a smooth closed point x ∈ X and Z is an effective
divisor not containing x. Further suppose that KX + ∆ ∼Q 0, then (X,∆) is log canonical.

Proof. Reduce to characteristic p � 0, then (Xp,∆p) is F -split and thus locally F -pure.
This implies that (X,∆) is log canonical. �

2. Diagonal splitting

Definition 2.1. [RR85] Suppose that X is a variety. We say that X is diagonally split if the
diagonal D is compatibly Frobenius split in X×X. Given an ample divisor on X, we say that
X is diagonally split along an ample effective divisor A if there exists a Frobenius splitting
φ : F∗OX×X → OX×X that compatibly splits D and also factors through F∗OX×X(p∗2A).

Proposition 2.2. Suppose that X is a complete variety and suppose that L and M are
line bundles on X. Consider the natural map

m(L ,M ) : Γ(X,L )⊗ Γ(X,M )→ Γ(X,L ⊗M ).

If either

(1) L and M are ample and X is diagonally Frobenius split, or
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(2) L and M are semi-ample (or simple nef?) and X is diagonally Frobenius split along
an ample effective Cartier divisor A,

then m(L ,M ) is surjective.

Proof. We begin by recasting m(L ,M ) as a different map. Now, Γ(X,L ) ⊗ Γ(X,M ) ∼=
Γ(X × X, p∗1L ⊗ p∗2M ), and furthermore, if i : D ⊆ X × X is the inclusion map, then
i∗(p∗1L ⊗ p∗2M ) = L ⊗M . Therefore, it is sufficient to show that the restriction map

Γ(X ×X, p∗1L ⊗ p∗2M )→ Γ(D, (p∗1L ⊗ p∗2M )|D)

is surjective. In the first case, p∗1L ⊗ p∗2M is ample. Consider the following commutative
diagram where φ is just the Frobenius splitting twisted by a line bundle:

H0(X ×X,OX×X((p∗1L ⊗ p∗2M )p
e
))

φ
//

γ

��

H0(X ×X,OX×X(p∗1L ⊗ p∗2M ))

δ
��

H0(D,OD((p∗1L ⊗ p∗2M )p
e
))

φ̄
// H0(D,OD(p∗1L ⊗ p∗2M ))

By Serre vanishing, γ is surjective and φ̄ is also surjective because it is induced from a
splitting. Thus δ is surjective as well and (1) is proven.

By composing Frobenius splittings along an both p∗1A and p∗2A, we obtain a Frobenius
splitting along an ample divisor B = p∗1A

n ⊗ p∗2Am on X × X for some integers n,m > 0.
Consider the restriction map

H0(X ×X,OX×X((p∗1L
r ⊗ p∗2M r)(B)))→ H0(D,OD((p∗1L

r ⊗ p∗2M r)(B)))

for various integers r. The above argument shows that this map is surjective. Composing
with the Frobenius splitting along B gives us a diagram

H0(X ×X,F e
∗OX×X((p∗1L

r ⊗ p∗2M r)(B))) //

��

H0(D,F e
∗OD((p∗1L

r ⊗ p∗2M r)(B)))

��

H0(X ×X,OX×X((p∗1L
r ⊗ p∗2M r))) // H0(D,F e

∗OD((p∗1L
r ⊗ p∗2M r)))

As before, the bottom row is surjective which completes the proof. �

Corollary 2.3. Suppose that X is a diagonally Frobenius split projective variety, then every
ample divisor is very ample and induces a projectively normal embedding. Furthermore, if it
is diagonally Frobenius split along an ample divisor, then the algebra of sections of a semi-
ample divisor is generated in degree 1. Furthermore, every semi-ample divisor is globally
generated.

Corollary 2.4. Suppose in addition that X is Cohen-Macaulay and diagonally Frobenius
split along an ample divisor, then X is arithmetically Cohen-Macaulay with respect to any
ample line bundle.

Proof. Choose A an ample effective divisor, this divisor is very ample and induces a projec-
tively normal embedding by assumption. Thus we only have to show that H i(X,OX(vA)) =
0 for 1 ≤ i ≤ dim(X)− 1 and all v ∈ Z. But since A is ample, these vanishings hold via the
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usual Frobenius splitting arguments for v 6= 0. Consider v = 0, suppose that M is an ample
divisor along which X is Frobenius split. We have

OX → F e
∗OX → F e

∗OX(M)

splits and thus OX → F neOX(mM) where we can make m � 0. But then H i(X,OX) →
H i(X,F e

∗OX(mM)) splits, and the right side vanishes for m� 0. �

Remark 2.5. Various generalizations can be made to splittings of X×X×· · ·×X. Further-
more, these can be used to prove that various section rings R(X,L ) are Koszul.

3. Toric varieties

In this section we briefly discuss Frobenius splittings on toric varieties. There are numerous
good introductions to toric varieties available, the canonical reference is probably still []
although also see [].

Consider the torus T ' (Gm)n = (A1 \ {0})n where k = k.

Definition 3.1. A toric variety is a normal variety X containing T as an open subset such
that the natural action of T on itself by multiplication extends to an action on X.

Lemma 3.2. A toric variety can be covered by Torus invariant affine open subsets. Each
one of them is Spec k[xλ1 , . . . ,xλm ] for some monomials xλi.

Proof. We leave the first statement to the reader, as it is contained in any introductory text
on toric varieties. For the second statement, notice that if U = SpecR is a torus invariant
open affine subset, then if any polynomial f =

∑
aix

i is in U , by using the torus action, it
is clear that each monomial appearing in f is in R. The claimed statement follows. �

Now, the torus T = Spec k[x±1
1 , . . . , x±1

n ] has a very natural Frobenius splitting Φc :
F∗OT → OT , namely the one defined as follows:

Φc(x
λ) =

{
xλ/p if each entry in λ is divisible by p.

0 otherwise.

This is called the canonical Frobenius splitting (also see [BK05, Section 4]).

Proposition 3.3. If X is a toric variety, then Φc induces a Frobenius splitting Φc : F∗OX →
OX .

Proof. We can work on an open affine set U = SpecR = Spec k[xλ1 , . . . ,xλm ]. Since R is
normal, if xλ ∈ R, then if λ/p ∈ Zn, we clearly see that xλ/p ∈ R as well. Since Φc(1) = 1,
we have explicitly seen our Frobenius splitting. �

Definition 3.4. If X is a toric variety and Z ⊆ X an irreducible subvariety, then we say
that Z is a torus invariant subvariety if it is invariant under the torus action.

Example 3.5. In the toric variety A2, the torus invariant subvarieties are the two coordinate
axes and also the origin.

Lemma 3.6. Suppose that X is a toric variety, then Z ⊆ X is a torus invariant subvariety
if and only if Z is Φc compatible.
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Proof. We can assume that X = Spec k[xλ1 , . . . ,xλm ]. A torus invariant subvariety thus
corresponds to a prime ideal generated by monomials, and it is clear that any such ideal is
Φc-compatible. Thus we suppose that Q is a Φc compatible ideal (note that Φc is surjective,
so Q is automatically radical and Φc(F∗Q) = Q). Further suppose that Q is prime. We will
show that Q generated by monomials.

Suppose that
∑
aix

λi = g ∈ Q. We simply need to show that each xλi ∈ Q. Con-
sider h = Φe

c(x
(pe−1)λig). Clearly this polynomial contains xλi as an entry. Now, consider

Φe
c(x

(pe−1)λixλj ) = x((pe−1)λi+λj)/pe
. But

((pe − 1)λi + λj) /p
e = λi +

λj − λi
pe

.

This is not in Zn for e� 0 if j 6= i. Therefore, for e� 0, Φe
c(x

(pe−1)λig) = xλi which proves
that Q is generated by monomials. �

We now briefly review the theory of canonical divisors on toric varieties.

Lemma 3.7. The anti-canonical divisor −KX in a toric variety X is equal to the sum of
all the torus invariant divisors. It can also be identified with X \ T .

Proof. See for example, []. �

Proposition 3.8. The Frobenius splitting Φc above has associated divisor −KX .

Proof. Clearly the divisor ∆Φc ≥ −KX (since every torus invariant divisor is Φc-compatible).
Therefore, we only have to observe that Supp(∆Φc) is torus invariant.

However, on the torus T , Φc generates HomOT
(F∗OT ,OT ) as an OT -module. �

Proposition 3.9. Projective toric varieties in characteristic zero are log Fano and in char-
acteristic p > 0 are globally F -regular.

Proof. Suppose that X is a projective toric variety in characteristic zero. Suppose that A is
an ample effective torus invariant divisor (it is a general fact that Supp(A) = Supp(−KX).
Choose rational ε > 0 such that ∆ := −KX − εA > 0. Choose a toric log resolution

π : X̃ → X of (X,∆), we know that

KX̃ − π
∗(KX + ∆) = KX̃ − π

∗(KX −KX − εA) = KX̃ + επ∗A.

It is clear that Supp(π∗A) = Supp(−KX̃), thus all the coefficients of KX̃ + επ∗A are strictly
bigger than −1 (which are the coefficients of KX̃).

Now suppose that X is a projective toric variety in characteristic p > 0. Again choose
A an ample effective torus invariant divisor. The section ring S(A) is always a monomial
algebra, and therefore it is always strongly F -regular (since it is a summand of k[x1, . . . , xn]).
The fact that the section ring is strongly F -regular is then easily seen to imply that X is
globally F -regular. �

An important open question in the study of toric varieties is the following (which I have
seen attributed to Oda):

Question 3.10. Suppose that X is a smooth toric variety and L is an ample line bundle.
Then does L induce a projectively normal embedding into some projective space? It is
known that L is always very ample.
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Several years ago, it was hoped that the Frobenius splitting methods including Frobenius
splitting along diagonals, would be enough to prove this result. The most immediate problem
is that the diagonal in X × X is not torus invariant, and therefore it is NOT compatibly
Frobenius split by Φc (this caused some confusion in the past). However Sam Payne has
analyzed exactly when there exists a Frobenius splitting of X ×X which compatibly splits
the diagonal (it’s just not the toric one).

If ∆ is a fan in a lattice N and M is the dual lattice, Payne defined

FX := {u ∈M | − 1 ≤ 〈u, vρ〉 ≤ 1 where vρ is a primitive generator of a ray in ∆.}

Theorem 3.11. [Pay09] A toric variety X = X(∆) is diagonally Frobenius split if and only
if the interior of FX contains the interior of every equivalence class of (1

p
M)/M .
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