F-SINGULARITIES AND FROBENIUS SPLITTING NOTES 11/9-2010

KARL SCHWEDE

Before continuing on, we need a very brief introduction to Matlis/local-duality. Suppose that (R, \mathfrak{m}) is a local ring. We know every *R*-module lives inside an injective *R*-module. In particular, R/\mathfrak{m} lives inside an injective *R*-module *I*. It turns out that there is in some sense a smallest (up to containment) injective module *E* containing R/\mathfrak{m} . This module is unique up to isomorphism and is called the injective hull of R/\mathfrak{m} and will be denoted by $E = E_{R/\mathfrak{m}}$.

Theorem 0.1 (Matlis). [BH93] $\operatorname{Hom}_R(\underline{\ }, E)$ is an exact functor which (faithfully) takes finitely generated *R*-modules to artinian *R*-module. Furthermore, if *R* is complete, then the functor (faithfully) takes artinian *R*-modules to finitely generated *R*-modules, induces an equivalence of categories between the two sets, and applying it twice is an isomorphism. Finally, $\operatorname{Hom}_R(\underline{\ }, E)$ always induces an equivalence of the category of finite length *R*-modules (i.e., Noetherian + Artinian modules).

Theorem 0.2 (Grothendieck). [Har66] With notation as above, $\operatorname{Hom}_R(h^{-i}(\omega_R^{\bullet}), E) \cong h^{-i}(\mathbb{R} \operatorname{Hom}_R(\omega_R^{\bullet}, E))$ $H^i_{\mathfrak{m}}(R)$. More generally for $M \in D^b_{\operatorname{coh}}(R)$ there is a functorial isomorphism

 $\operatorname{Hom}_R(h^{-j}\mathbf{R}\operatorname{Hom}_R(M,\omega_R^{\bullet}),E)\cong \mathbb{H}^j_{\mathfrak{m}}(M).$

Corollary 0.3. With notation as above, $\operatorname{Hom}_{R}(F^{e}_{*}\omega_{R}, E) \cong H^{d}_{\mathfrak{m}}(F^{e}_{*}R).$

Corollary 0.4. An *F*-finite ring *R* is *F*-rational if and only if it is:

- (a) R is Cohen-Macaulay, and
- (b) for every finite extension $R \subseteq S$, the natural map $T : \omega_S \to \omega_R$ is surjective.

Condition (b) and also be replaced by

- (b*) for every generically finite proper map $\pi: Y \to \operatorname{Spec} R$, the natural map $T: \pi_* \omega_Y \to \omega_R$ is surjective, or
- (b**) for every alteration $\pi: Y \to \operatorname{Spec} R$, the natural map $T: \pi_* \omega_Y \to \omega_R$ is surjective.

Proof. It is harmless to assume that R is normal (otherwise the normalization map breaks condition (b), (b^{*}) and (b^{**})).

First we will show that F-rational implies (b^{*}) (which obviously implies (b) and (b^{**})). But this is easy, simply consider the commutative diagram

$$F_*\pi_*\omega_Y \xrightarrow{\pi_*\Psi_Y} \pi_*\omega_Y$$

$$T \downarrow \qquad \qquad \downarrow T$$

$$F_*\omega_R \xrightarrow{\Psi_R} \omega_R$$

The image of T is clearly Ψ_R -stable and non-zero, and F-rational implies that there are no proper Ψ_R -stable submodules.

Conversely, suppose we have conditions (a) and (b) (note that condition (b) is automatically implied by (b^{*}) and (b^{**})). Suppose that R is not F-rational. By localizing at the generic point of the non-F-rational locus, we may assume that (R, \mathfrak{m}) is a local d-dimensional ring which is F-rational on the punctured spectrum. This means that $\omega_R/\tau(\omega_R)$ is supported at the maximal ideal. We set E to be an injective hull of R/\mathfrak{m} and apply $\operatorname{Hom}_R(\underline{\ }, E)$ to the short exact sequence:

$$0 \to \tau(\omega_R) \to \omega_R \to \omega_R / \tau(\omega_R) \to 0$$

yielding

$$0 \leftarrow \tau(\omega_R)^{\vee} \leftarrow H^d_{\mathfrak{m}}(R) \leftarrow (\omega_R/\tau(\omega_R))^{\vee} \leftarrow 0.$$

We knew that $\tau(\omega_R)$ is $\Phi_R : F_*R \to R$ stable. It follows that its dual is stable under the Frobenius action $H^d_{\mathfrak{m}}(R) \to H^d_{\mathfrak{m}}(F^e_*R)$. Its dual is a finite length Frobenius stable submodule, thus there exists a finite extension $R \subseteq S$ such that $(\omega_R/\tau(\omega_R))^{\vee}$ is sent to zero in $H^d_{\mathfrak{m}}(S)$. Consider the diagram:

$$\omega_S \to \omega_R \to \omega_R / \operatorname{Image}(\omega_S) \to 0$$

The dual is

$$H^d_{\mathfrak{m}}(S) \leftarrow H^d_{\mathfrak{m}}(R) \leftarrow K \leftarrow 0.$$

We know that $(\omega_R/\tau(\omega_R))^{\vee}$ is contained in K. Thus $\tau(\omega_R) = \text{Image}(\omega_S \to \omega_R)$.

Remark 0.5. The submodule $(\omega_R/\tau(\omega_R))^{\vee} \subseteq H^d_{\mathfrak{m}}(R)$ is often denoted by $0^*_{H^d(R)}$ and is called the *tight closure of zero in* $H^d_{\mathfrak{m}}(R)$.

The proof leads us to the following question. Does there always exist a finite map $R \subseteq S$ such that $\tau(R) = \text{Image}(\omega_S \to \omega_R)$?

Theorem 0.6. [HL07] [cf Hochster-Yao] Suppose R is an F-finite domain. Then there always exists a finite map $R \subseteq S$ such that $\tau(R) = \text{Image}(\omega_S \to \omega_R)$ and therefore

$$\tau(\omega_R) = \bigcap_{R \subseteq S} \operatorname{Image}(\omega_S \to \omega_R).$$

More generally,

$$\tau(\omega_R) = \bigcap_{f:Y \to \text{Spec } R \text{ a regular alteration}} \text{Image}(f_*\omega_Y \to \omega_R)$$

Proof. The statement is local so we assume that R is a local ring with maximal ideal \mathfrak{m} .

First we show that the second statement follows from the first. To do this, we simply observe that $\tau(\omega_R) \subseteq \text{Image}(f_*\omega_Y \to \omega_R)$ for any generically finite proper dominant map $f: Y \to \text{Spec } R$ (this is based on the usual argument used to prove "*F*-rational (\Rightarrow) rational", which is essentially due to K. Smith, [Smi97]).

To see this, consider the diagram

$$Y \xrightarrow{F} Y$$

$$f \downarrow \qquad \qquad \downarrow f$$

$$Spec R \xrightarrow{F} Spec R$$

where the horizontal arrows are Frobenius. It is an easy application of Grothendieck duality that we have a commutative diagram:

The image of $f_*\omega_Y \to \omega_R$ is non-zero at every maximal dimensional component of Spec R since f is generically finite and dominant. From this diagram and the definition of the parameter test submodule it immediately follows that Image $(f_*\omega_Y \to \omega_R)$ contains $\tau(\omega_R)$.

It hence remains to show that we can find some finite map where the containment is indeed equality. For this we closely follow the strategy of [HL07]: Choose $\eta \in \text{Spec } R$ to be a generic point of the non-*F*-rational locus of *R*. We know that $(\omega_R/\tau(\omega_R))^{\vee} = 0^*_{\mathbb{H}^d_{\mathfrak{m}}(R)}$ (where $(\cdot)^{\vee}$ denotes the Matlis dual by []. Because the punctured spectrum of *R* is *F*-rational, $\omega_R/\tau(\omega_R)$ and thus also $0^*_{\mathbb{H}^d}(R)$ has finite length.

It follows from the equational lemma above, that there exists a finite extension of reduced rings $R_{\eta} \subseteq S_{\eta}$ such that the image of $0^*_{\mathbb{H}^{\dim R_{\eta}}_{\eta}(R_{\eta})}$ in $H^{\dim R_{\eta}}_{\eta}(S_{\eta})$ is zero. By taking the normalization of R inside the total field of fractions of S_{η} , we may assume that S_{η} is indeed the localization of some S' at η . Because $0^*_{\mathbb{H}^{\dim R_{\eta}}_{\eta}(R_{\eta})} \to H^{\dim R_{\eta}}_{\eta}(S_{\eta})$ is zero, the Matlis dual map $(\omega_S)_{\eta} \to (\omega_R/\tau(\omega_R))_{\eta}$ is also zero.

By doing this for each generic point of the non-*F*-rational locus of *R* and taking a common extension, we can set S^1 to be a common extension of all the *S'*. We thus have $I_1 :=$ Image($\omega_{S^1} \to \omega_R$) such that the support of $I_1/\tau(\omega_R)$ is of strictly smaller dimension than the non-*F*-rational locus. Choose $\eta_1 \in \text{Spec } S^1$, a generic point of that support and suppose that dim $R_{\eta_1} = d_1$. Therefore, $(I_1/\tau(\omega_R))_{\eta_1}$ has finite length.

Consider the map $g_1 : H_{\eta_1}^{(1)}(R_{\eta_1}) \to H_{\eta_1}^{d_1}(S_{\eta_1}^1)$ and note that the image of $\omega_{S^1})_{\eta_1} \to \omega_R/\tau(\omega_R)$ has support at η_1 which implies that the image of $g_1(0^*_{H_{\eta_1}^{d_1}(R_{eta_1})}) \subseteq H_{\eta_1}^{d_1}(S_{\eta_1}^1)$ is also finite length.

Choose z in that image. We know z, z^p, z^{p^2}, \ldots are also contained in $g_1(0^*_{H^{d_1}(R_{eta_1})})$ since $0^*_{H^{d_1}_{\eta_1}(R_{\eta_1})}$ is stable under the Frobenius action. Therefore, there exists a finite extension $S^1_{\eta_1} \subseteq S''_{\eta_1}$ such that z is sent to zero under the map $H^{d_1}_{\eta_1}(S^1_{\eta_1}) \to H^{d_1}_{\eta_1}(S''_{\eta_1})$. Because $(\tau(\omega_{R_{\eta_1}}))^{\vee}/\ker(g_1)$ is finite length, we can find a common extension $S_{\eta_1} \subseteq S''_{\eta_1}$ which kills $0^*_{H^{d_1}_{\eta_1}(R_{\eta_1})$. Thus the map $\omega_{S'_{\eta_1}} \to \omega_{R_{\eta_1}}$ has image $\tau(\omega_{R_{\eta_1}})$. Set S^2 to be the normalization of R inside the fraction field of S'^1 . Define $I_2 := \operatorname{Image}(\omega_{S^2} \to \omega_R)$.

It follows that $(I_2/\tau(\omega_R))$ has support a strictly smaller closed subset than $(I_1/\tau(\omega_R))$. Continuing in this way, Noetherian induction tells us that eventually $\tau(\omega_R)$ is the image of some map $\omega_{S^n} \to \omega_R$.

References

[BH93] W. BRUNS AND J. HERZOG: Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR1251956 (95h:13020)

- [Har66] R. HARTSHORNE: Residues and duality, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne. Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin, 1966. MR0222093 (36 #5145)
- [HL07] C. HUNEKE AND G. LYUBEZNIK: Absolute integral closure in positive characteristic, Adv. Math. 210 (2007), no. 2, 498–504. 2303230 (2008d:13005)
- [Smi97] K. E. SMITH: F-rational rings have rational singularities, Amer. J. Math. 119 (1997), no. 1, 159– 180. MR1428062 (97k:13004)