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1. Globally F -regular varieties

Definition 1.1. Let (X,∆) be a pair, where X is a normal irreducible F -finite scheme of
prime characteristic p and ∆ is an effective Q divisor on X. The pair (X,∆) is globally
F -regular if, for every effective divisor D, there exists some e > 0 such that the natural map
OX → F e

∗OX(d(pe − 1)∆e+D) splits (in the category of OX-modules).
X itself is called globally F -regular if (X, 0) is globally F -regular.

Lemma 1.2. If (X,∆) is globally F -regular, then (X,∆′) is globally F -regular for any ∆′ ≤
∆. The corresponding statement for globally sharply F -split pairs also holds.

Proof. This follows easily from the following simple observation: If a map of coherent sheaves

L
g→ F on a scheme X splits, then there is also a splitting for any map L

h→M through

which g factors. Indeed, factor g as L
h→ M

h′→ F . Then if s : F → L splits g, it is
clear that the composition s ◦ h′ splits h. Now we simply observe that if ∆′ ≤ ∆, we have a
factorization

OX → F e
∗OX(d(pe − 1)∆′e+D) ↪→ F e

∗OX(d(pe − 1)∆e+D),

so the result follows. �

Remark 1.3. On an affine variety, Globally F -regular is the same as strongly F -regular (one
can certainly take D = div(c) for various c ∈ OX , and every effective divisor D is less than or
equal to a Cartier divisor). However, since every globally F -regular variety is clearly F -split,
not every (locally) strongly F -regular variety is globally F -regular.

We now establish a useful criterion for global F -regularity, generalizing well-known results
for the local case [HH89, Theorem 3.3] and the “boundary-free” case [Smi00, Theorem 3.10].

Theorem 1.4. The pair (X,∆) is globally F -regular if (and only if) there exists some
effective (usually ample) divisor C on X satisfying the following two properties:

(i) There exists an e > 0 such that the natural map

OX → F e
∗OX(d(pe − 1)∆ + Ce)

splits.
(ii) The pair (X\C,∆|X\C) globally F -regular (for example, affine and locally F -regular).

Proof of Theorem 1.4. LetXC denote the open set complimentary to C. Now fix any effective
divisor C ′ on X. By hypothesis (ii), we can find e′ and an OX-module homomorphism

1



φ : F e′
∗ OXC

(d(pe′−1)∆|XC
+C ′|XC

e)→ OXC
that sends 1 to 1. In other words, φ is a section

of the reflexive sheaf
H omOX

(F e′

∗ OX(d(pe′ − 1)∆ + C ′e),OX)

over the open set XC . Thus on the non-singular locus U of X (really, we need the Cartier
locus of C), we can choose m0 > 0 so that φ|U is the restriction of a global section φm of

H omOU
(F e′

∗ OU(d(pe′ − 1)∆ + C ′e),OU)⊗OU(mC)

∼= H omOU
(F e′

∗ OU(d(pe′ − 1)∆ + C ′e),OU(mC))
(1)

over U , for all m ≥ m0; see [Har77, Chapter II, Lemma 5.14(b)]. Note that φm still sends 1
to 1. Now, since the involved sheaves are reflexive, this section extends uniquely to a global
section of H omOX

(F e′
∗ OX(d(pe′ − 1)∆ +C ′e),OX(mC)), also denoted φm over the whole of

X.
Consider an m of the form m = p(n−1)e + . . . pe + 1, where e is the number guaranteed by

hypothesis (i). Tensoring the map φm from Equation (1) with OX(d(pne − 1)∆e), we have
an induced map

F e′

∗ OX(d(pe′ − 1)∆e+ C ′ + pe
′d(pne − 1)∆e)→ OX(d(pne − 1)∆ +mCe).

Now, as in Lemma 1.2, it follows that there is a map

ψ : F e′

∗ OX(d(pne+e′ − 1)∆ + C ′e)→ OX(d(pne − 1)∆ +mCe)
which sends 1 to 1.

By composing the splitting from hypothesis (i) with itself (n− 1)-times and after twisting
appropriately (compare with [Tak04, Proof of Lemma 2.5] and [Sch09]), we obtain a map

θ : F ne
∗ OX(d(pne − 1)∆ + (p(n−1)e + · · ·+ pe + 1)Ce) = F ne

∗ OX(d(pne − 1)∆ +mCe)→ OX
which sends 1 to 1.

Combining the maps θ and ψ, we obtain a composition

F ne+e′
∗ OX(d(pne+e′ − 1)∆ + C ′e)

Fne
∗ (ψ∆)

// F ne
∗ OX(d(pne − 1)∆ +mCe) θ

// OX
which sends 1 to 1 as desired. The proof is complete. �

Theorem 1.5. Let X be a normal scheme quasiprojective over an F -finite local ring with a
dualizing complex and suppose that B is an effective Q-divisor on X.

(i) If the pair (X,B) is globally F -regular, then there is an effective Q-divisor ∆ such
that (X,B + ∆) is globally F -regular with KX +B + ∆ anti-ample.

(ii) Similarly, if (X,B) is globally sharply F -split, then there exists an effective Q-divisor
∆ such that (X,B + ∆) is globally sharply F -split with KX +B + ∆ Q-trivial.

In both (i) and (ii), the denominators of the coefficients of B+∆ can be assumed not divisible
by the characteristic p.

Proof of Theorem 1.5. First, without loss of generality, we may assume that the Q-divisor
B has no denominators divisible by p, we won’t prove this here but it is straightforward.

We first prove statement (ii), which follows quite easily. Suppose that (X,B) is globally
sharply F -split. Consider a splitting

OX // F e
∗OX // F e

∗OX((pe − 1)B)
φ

// OX
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where (pe − 1)B is an integral divisor. Apply H omOX
( ,OX) to this splitting. We then

obtain the following splitting,

OX F e
∗OX((1− pe)KX)oo F e

∗OX((1− pe)(KX +B))oo OX .
φ∨

oo

The image of 1 under φ∨ determines a divisor D′ which is linearly equivalent to (1−pe)(KX+
B). This produces a composition

(2) OX F e
∗OX(D′ + (pe − 1)B)oo F e

∗OX(D′)oo OX .
φ∨

oo

Set ∆1 = 1
pe−1

D′. Then the pair (X,B + ∆1) is globally sharply F -split with the splitting

given by Equation (2). But also, it is log Calabi Yau, since

KX +B + ∆1 ∼Q KX +B +
1

pe − 1
(1− pe)(KX +B) = 0.

This completes the proof of (ii).
More work is required to prove (i). Suppose that (X,B) is globally F -regular. Then it is

also globally sharply F -split, and we may pick ∆1 as in (ii). Choose H to be a very ample
effective divisor such that Supp ∆1 ⊆ SuppH. Consider a splitting

OX // F f
∗OX(H) // F f

∗OX((pf − 1)B +H)
ψ

// OX ,

such that (pf − 1)B is integral. Apply H omOX
( ,OX) to this splitting to obtain a dual

splitting,

(3) OX F f
∗OX((1− pf )KX −H)oo F f

∗OX((1− pf )(KX +B)−H)oo OX
ψ∨

oo

The image of 1 under ψ∨ determines a divisor D′′ which is linearly equivalent to (1−pf )(KX+
B)−H. Set ∆2 = 1

pf−1
D′′. Note that

KX +B + ∆2 ∼Q
−1

pf − 1
H

which is anti-ample. Also note that the splitting in line (3) demonstrates the pair (X,B+∆2)
to be globally sharply F -split. Even better, line (3) also demonstrates (X,B+ ∆2 + 1

pf−1
H)

to be globally sharply F -split.
We now make use of Lemma 1.6 below to complete the proof. In addition to the globally

F -regular pair (X,B), we have constructed divisors ∆1 and ∆2 satisfying

(i) (X,B + ∆1) is globally sharply F -split with KX +B + ∆1 ∼Q 0; and
(ii) (X,B + ∆2) is globally sharply F -split with KX +B + ∆2 anti-ample.

(iii) (X,B + ∆2 + δH) is globally sharply F -split for some small positive δ.

Now we apply Lemma 1.6(i) to the divisors described in (i) and (iii) above. We thus fix
positive rational numbers ε1, ε2, with ε1 + ε2 = 1 such that

(X, ε1(B + ∆1) + ε2(B + ∆2 + δH)) = (X,B + ε2∆2 + ε1∆1 + ε2δH)

is globally sharply F -split. Since the support of ∆1 is contained in the support of H, it
follows from Lemma 1.2 that

(4) (X,B + ε2∆2 + (ε1 + ε′)∆1)
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is globally sharply F -split for some small positive ε′. But also (X,B + ε2∆2) is globally
F -regular, as one sees by applying Lemma 1.6(iii) to the globally F -regular pair (X,B) and
the globally sharply F -split pair (X,B + ∆2).

Finally, another application of Lemma 1.6(iii), this time to the globally F -regular pair
(X,B + ε2∆2) and the globally sharply F -split pair of line (4), implies that (X,B + ε2∆2 +
ε1∆1) is globally F -regular. Set ∆ = ε1∆1 + ε2∆2. We conclude that the pair (X,B + ∆) is
globally F -regular, and

KX +B + ∆ = ε1(KX +B + ∆1) + ε2(KX +B + ∆2)

is anti-ample (from (i) and (ii) just above). This completes the proof of (i) and hence
Theorem 1.5. �

Lemma 1.6. Consider two pairs (X,B) and (X,D) on a normal F -finite scheme X.

(i) If both pairs are globally sharply F -split, then there exist positive rational numbers
ε arbitrarily close to zero such that the pair (X, εB + (1 − ε)D) is globally sharply
F -split.

(ii) If (X,B) is globally F -regular and (X,D) is globally sharply F -split, then there exist
positive rational numbers ε arbitrarily close to zero such that the pair (X, εB+(1−ε)D)
is globally F -regular.

(iii) In particular, if (X,B) is globally F -regular and (X,B+∆) is globally sharply F -split,
then (X,B + δ∆) is globally F -regular for all rational 0 < δ < 1.

In (i) and (ii), the number ε can be assumed to have denominator not divisible by p.

Proof of Lemma 1.6. First note that (iii) follows from (ii) by taking D to be (B+ ∆). Since
(1− ε) can be taken to be arbitrarily close to 1, we can choose it to exceed any given δ < 1.
Hence, the pair (X,B + δ∆) is globally F -regular for all positive δ < 1, by Lemma 1.2.

For (i), we prove that we can take ε to be any rational number of the form

(5) ε =
pe − 1

p(e+f) − 1

where e and f are sufficiently large and divisible (but independent) integers. Take e large
and divisible enough so there exists a map φ : F e

∗OX(d(pe − 1)Be) → OX which splits the
map OX → F e

∗OX(d(pe − 1)Be). Likewise, take f large and divisible enough so there exists
a map ψ : F f

∗OX(d(pf − 1)De)→ OX which splits the map OX → F f
∗OX(d(pf − 1)De).

Consider the splitting

OX // F e
∗OX(d(pe − 1)Be) φ

// OX .

Because all the sheaves above are reflexive and X is normal, we can tensor with OX(d(pf −
1)De to obtain a splitting

OX(d(pf − 1)De) // F e
∗OX(d(pe − 1)Be+ ped(pf − 1)De) // OX(d(pf − 1)De).

Applying F f
∗ to this splitting, and then composing with ψ we obtain the following splitting,

OX // F e+f
∗ OX(d(pe − 1)Be+ ped(pf − 1)De) // OX

However, we also note that

d(pe − 1)Be+ ped(pf − 1)De ≥ d(pe − 1)B + pe(pf − 1)De
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which implies that we also have a splitting

OX // F e+f
∗ OX(d(pe − 1)B + pe(pf − 1)De) // OX

If we then multiply (pe − 1)B + pe(pf − 1)D by 1
p(e+f)−1

, the proof of (i) is complete for the

choice of ε given in line 5.
Now, to prove (ii), we use Theorem 1.4. Choose an effective integral divisor C whose

support contains the support of D and such that the pair (X \ C,D|X\C) is globally F -
regular. Since there exists a splitting of

OX → F f
∗OX(d(pf − 1)B + Ce),

it follows that the pair (X,B + 1
pf−1

C) is globally sharply F -split. Applying part (i) of the

Lemma to the pairs (X,B + 1
pf−1

C) and (X,D), we conclude that

(X, ε(B +
1

pf − 1
C) + (1− ε)D)

is globally sharply F -split. Re-writing, we have

(X, εB + (1− ε)D + ε′C)

is globally sharply F -split for ε and ε′ arbitrarily close to zero.
We now apply Theorem 1.4 to the pair (X,∆) = (X, εB+ (1− ε)D). Restricted to X \C,

this pair is globally F -regular, and we’ve just shown that for sufficiently small ε′, the pair
(X,∆+ε′C) is globally sharply F -split. Using Lemma 1.4 we conclude that (X,∆) is globally
F -regular.

Finally, note that because of the explicit choice of ε in line (3), it is clear its denominator
can be assumed not divisible by p. �

Corollary 1.7. If X is globally F -regular, then X there exists a divisor ∆ ≥ 0 such that
(X,∆) is log Fano.

Straightforward techniques involving cones imply the following converse.

Theorem 1.8. Let X be a normal projective variety over a field of characteristic zero. If
(X,∆) is a Kawamata log terminal pair such that KX + ∆ is anti-ample (ie, (X,∆) is log
Fano), then (X,∆) has globally F -regular type.

Proof. The idea of the proof is the following lemma. X in characteristic p > 0 is globally
F -regular if and only if the section ring with respect to an ample divisor is strongly F -
regular. Also, for X in characteristic zero, (X,∆) is log Fano if and only if the section
ring pair (S,∆S), associated to an ample divisor, is Kawamata log terminal. Now reduce to
characteristic p� 0. �

Theorem 1.9. Let X be a normal projective variety over a field of prime characteristic. Let
L be a Cartier divisor on X such that L ∼Q M + ∆, where M is a nef and big Q-divisor and
the pair (X,∆) is globally F -regular. Then H i(X,OX(−L)) = 0 for i < dimX.

Proof. Because L is big, we can fix f � 0 so that there exists an effective E linearly equivalent
to pfL. By taking f larger if necessary, we can also assume that for all large and sufficiently
divisible e,

(1) pf (pe − 1)∆ and pf (pe − 1)M are integral,
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(2) OX(pf (pe − 1)L) ∼= OX(pf (pe − 1)(M + ∆)).

Since M is nef and big, there exists an effective divisor D such that nM −D is ample for
all n � 0; see [Laz04, Cor 2.2.7]. Because (X,∆) is globally F -regular, for all sufficiently
large integers g, the map

OX → F g
∗OX(d(pg − 1)∆e+D + E)

splits. By choosing g large enough, we may assume that g = f + e where f is the fixed
integer above and e > 0 is such that both (1) and (2) are satisfied above. Also, we can
assume that pf (pe − 1)M −D is ample. Therefore, the map

OX → F e+f
∗ OX(pf (pe − 1)∆ +D + E)

splits since pf (pe− 1)∆ ≤ d(pe+f − 1)∆e. Tensoring (on the smooth locus, and extending as
usual) with OX(−L) and taking cohomology, we have a splitting of the map

H i(X,OX(−L))→ H i(X,F e+f
∗ OX(−pe+fL+ pf (pe − 1)∆ +D + E)).

In particular, this map on cohomology is injective for all sufficiently large and divisible e.
However,

−pe+fL+ pf (pe − 1)∆ +D + E =

−(pe+f − pf )L− pfL+ pf (pe − 1)∆ +D + E ∼
(−pf (pe − 1)M − pf (pe − 1)∆) + pf (pe − 1)∆ +D +

(
E − pfL

)
∼

−pf (pe − 1)M +D

which is anti-ample. Therefore, H i(X,OX(−pe+fL + pf (pe − 1)∆ + D + E)) vanishes for
i < dimX since X is globally F -regular, by [Smi00, Corollary 4.4], see also [BK05]. Because
of the injection above, it follows thatH i(X,OX(−L)) vanishes, and the proof is complete. �

2. Criteria for F-splitting of varieties

In the past, we’ve see Fedder’s criteria for Frobenius splitting of algebraic varieties. Now,
suppose that X is a variety over an algebraically closed field of characteristic p > 0. We
will discuss the Mehta-Ramanathan criterion of Frobenius splitting, which is very useful in
practice.

We’ve recently discussed using Cartier-operator as a way to construct explicitly the dual
of Frobenius, F∗ωX → ωX . Recall this was constructed as follows: we have the isomorphism
C−1 : Ωi

X(logE) ∼= Hi (F∗(Ω
q
X(logE)). Take E = 0 and i = d = dimX, this give us

ωX ∼= Hd (F∗Ω
q
X). But for i > d, the terms F∗Ω

i
X of the complex F∗Ω

q
X are zero, and so we

have a surjection F∗ωX → ωX . This can be identified with the canonical dual of Frobenius.

Lemma 2.1. [BK05, Lemma 1.3.6] Suppose that x ∈ X is a smooth point of an n-dimensional
variety X over an algebraically closed field k. Then the map T : F∗ωX → ωX is described by
the following formula. For any set of generators t1, . . . , tn of the maximal ideal of OX,x

T (fdt1 ∧ · · · ∧ dtn) = S(f)dt1 ∧ · · · ∧ dtn
where S is defined on k[[t1, . . . , tn]] ⊇ OX,x as the map which sends the monomial tp−1

1 . . . tp−1
n

to 1 and the other monomials to zero.
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This proof is taken from [BK05]. Certainly dt1 ∧ . . . dtn generates ωX as an OX-module as
well, which identifies ωX,x with OX,x. The completion of ωX/d(Ωd−1

X ) is thus identified
with k[[x1, . . . , xn]]/J where J is the vector-space spanned by all partial derivatives of h ∈
k[[x1, . . . , xn]. To see this, simply note that

d(hdt̂i) = ∂h∂tidt1 ∧ · · · ∧ dtn.
Thus, J is made up of all power series

∑
ait

i where p 6 |(ij + 1) for some 1 ≤ j ≤ n. In
other words, k[[x1, . . . , xn]]/J is the set of power-series of the form

∑
ajt

p−1+pj. But this
is obviously identified with (k[[t1, . . . , tn]])p, and unraveling our identifications yields the
desired formula. �

Following Brion and Kumar, we also obtain the following:

Proposition 2.2. [BK05, Proposition 1.3.7] Let X be a nonsingular variety. Then the
following map η is an isomorphism. The map η

η : H omOX
(ωX , F∗ωX)→H omOX

(F∗OX ,OX)

is defined as follows: Working locally, fix a local generator ω for ωX,x. Furthermore, for
ψ ∈ H omOX,x

(ωX,x, F∗ωX,x) and f ∈ OX,x, we define η(ψ)f to be the ω coefficient of
T (fψ(ω)).

This is well defined and furthermore, we obtain the following commutative diagram

H omOX
(ωX , F∗ωX)

η
//

T
��

H omOX
(F∗OX ,OX)

eval at 1
��

H omOX
(ωX , ωX)

κ
// H om(OX ,OX)

where κ is the natural isomorphism.

Proof. Fix g ∈ OX,x. Then notice that η(ψ · g) is defined by the rule

T (fψ(gω))/ω = T (fgpψ(ω))/ω = gT (fψ(ω))/ω

In particular, η is F∗OX-linear.
We now show that our local definition of η is well defined. Suppose that ω′ = uω for some

unit u ∈ OX,x. With this, we define a new map η′, where η′(ψ)(f) = T (fψ(ω′))/ω′. So,

η′(ψ)(f) = T (fψ(ω′))/ω′ = T (fψ(uω))/ω′ = T (fupψ(ω))/ω′ = uT (fψ(ω))/(uω) = η(ψ)(f).

Now we show that the diagram commutes. Given ψ ∈H omOX
(ωX , F∗ωX), the left-vertical

arrow is defined by:
(T (ψ))(fω) = T (ψ(fω)) = fT (ψ(ω)).

In particular, κ(T (ψ)) is the map obtained by multiplication by T (ψ(ω))/ω. On the other
hand, the composition of η with the right vertical arrow is just

η(ψ)(1) = T (ψ(ω))/ω.

Therefore, the diagram commutes as desired.
Finally, we show that η is an isomorphism. We work locally and fix a minimal set of

generators x1, . . . , xn for the maximal ideal ofOX,x. Notice that ψ ∈H omOX,x
(ωX,x, F∗ωX,x),

defined by the rule
ψ(fdt1 ∧ · · · ∧ dtn) = fpdt1 ∧ · · · ∧ dtn
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This map clearly generates H omOX
(ωX,x, F∗ωX,x) as an F∗OX,x-module. Now, η(ψ)(f) =

T (fψ(ω))/ω = T (fω) = S(f). In particular, since S generates HomOX,x
(F∗OX,x,OX,x),

we see that η is surjective, and thus it is an isomorphism since both modules are rank-1
F∗OX-modules. �
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