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1. GLOBALLY F-REGULAR VARIETIES

Definition 1.1. Let (X, A) be a pair, where X is a normal irreducible F-finite scheme of
prime characteristic p and A is an effective Q divisor on X. The pair (X, A) is globally
F-regqular if, for every effective divisor D, there exists some e > 0 such that the natural map
Ox — FfOx([(p® — 1)A] + D) splits (in the category of Ox-modules).

X itself is called globally F-regular if (X,0) is globally F-regular.

Lemma 1.2. If (X, A) is globally F-regular, then (X,A’) is globally F-regular for any A" <
A. The corresponding statement for globally sharply F-split pairs also holds.
Proof. This follows easily from the following simple observation: If a map of coherent sheaves

Z 2L F on a scheme X splits, then there is also a splitting for any map . L4 through

which ¢ factors. Indeed, factor g as & o s . Thenifs . F — &£ splits g, it is
clear that the composition s o b’ splits h. Now we simply observe that if A’ < A, we have a
factorization

Ox — FOx([(p* = DA'] + D) — F:Ox([(p° — 1)A] + D),
so the result follows. O

Remark 1.3. On an affine variety, Globally F-regular is the same as strongly F-regular (one
can certainly take D = div(c) for various ¢ € Oy, and every effective divisor D is less than or
equal to a Cartier divisor). However, since every globally F-regular variety is clearly F-split,
not every (locally) strongly F-regular variety is globally F-regular.

We now establish a useful criterion for global F-regularity, generalizing well-known results
for the local case [HH89, Theorem 3.3] and the “boundary-free” case [Smi00, Theorem 3.10].

Theorem 1.4. The pair (X,A) is globally F-regular if (and only if) there exists some
effective (usually ample) divisor C on X satisfying the following two properties:

(i) There exists an e > 0 such that the natural map
Ox — FiOx([(p* —1)A+C1)

splits.
(ii) The pair (X\C, Alx\¢) globally F-regqular (for example, affine and locally F-regqular).

Proof of Theorem[I1.4 Let X¢ denote the open set complimentary to C'. Now fix any effective

divisor €’ on X. By hypothesis (ii), we can find ¢ and an Ox-module homomorphism
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¢ FCOx.([(p° —1)A|x. +C"|x.]) — Ox, that sends 1 to 1. In other words, ¢ is a section
of the reflexive sheaf

Homo, (FS Ox([(p” = 1)A+C"), Ox)
over the open set Xo. Thus on the non-singular locus U of X (really, we need the Cartier
locus of C'), we can choose mg > 0 so that ¢|y is the restriction of a global section ¢,, of

) Home, (FC O ([(p° — 1)A + C']), Op) @ Oy (mC)
=~ A omo, (F Ou([(p” = 1)A + "), Oy (mC))

over U, for all m > my; see [Har77, Chapter II, Lemma 5.14(b)]. Note that ¢,, still sends 1
to 1. Now, since the involved sheaves are reflexive, this section extends uniquely to a global
section of #ome, (F€Ox([(p® —1)A+C"]), Ox(mC)), also denoted ¢,, over the whole of
X.

Consider an m of the form m = p™ ¢ 4+ . p°+ 1, where e is the number guaranteed by
hypothesis (i). Tensoring the map ¢,, from Equation with Ox([(p" — 1)A]), we have
an induced map

FEOX([(0" — 1)A] + €+ [ — DAT) — Ox([(" — DA +mC)).
Now, as in Lemma [[.2] it follows that there is a map
G FEOx([(p" = 1A+ C) — Ox([(p" = 1A +mCT)

which sends 1 to 1.
By composing the splitting from hypothesis (i) with itself (n — 1)-times and after twisting
appropriately (compare with [Tak04, Proof of Lemma 2.5] and [Sch09]), we obtain a map

0: FrOx([(p" = DA+ (pU" D 4+ 4 p° + 1)) = FOx ([(p™ — DA +mC1) — Ox

which sends 1 to 1.
Combining the maps 6 and 1, we obtain a composition

Fr(s)

Frete Ox ([(p — DA + C) S Fre0x ([ = 1)A +mC1) ' Ox
which sends 1 to 1 as desired. The proof is complete. 0

Theorem 1.5. Let X be a normal scheme quasiprojective over an F-finite local ring with a
dualizing complex and suppose that B is an effective Q-divisor on X.
(i) If the pair (X, B) is globally F-reqular, then there is an effective Q-divisor A such
that (X, B+ A) is globally F-regular with Kx + B + A anti-ample.
(ii) Similarly, if (X, B) is globally sharply F-split, then there exists an effective Q-divisor
A such that (X, B + A) is globally sharply F-split with Kx + B + A Q-trivial.
In both (i) and (ii), the denominators of the coefficients of B+/A can be assumed not divisible
by the characteristic p.

Proof of Theorem[1.5 First, without loss of generality, we may assume that the Q-divisor
B has no denominators divisible by p, we won'’t prove this here but it is straightforward.

We first prove statement (ii), which follows quite easily. Suppose that (X, B) is globally
sharply F-split. Consider a splitting

Ox —— FeOx —— FeOx((p¢ — 1)B) —2 Oy
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where (p® — 1)B is an integral divisor. Apply #ome, (_,Ox) to this splitting. We then
obtain the following splitting,
qz)\/
OX — FfOX((l —pe)Kx) — FfOX((l — pe)(KX + B)) — OX.

The image of 1 under ¢¥ determines a divisor D’ which is linearly equivalent to (1—p®)(Kx +
B). This produces a composition

(2) Ox — FOx (D' + (pf — 1)B) — FOx (D) <> Oy,

Set Ay = IﬁD’ . Then the pair (X, B + A;) is globally sharply F-split with the splitting
given by Equation ([2). But also, it is log Calabi Yau, since
1
KX+B+A1 ~0Q KX+B+F(1—]?6)(KX+B) = 0.

This completes the proof of (ii).

More work is required to prove (i). Suppose that (X, B) is globally F-regular. Then it is
also globally sharply F-split, and we may pick A; as in (ii). Choose H to be a very ample
effective divisor such that Supp A; C Supp H. Consider a splitting

Ox — F/Ox(H) — F/Ox((p’ —1)B + H) L Ox,

such that (p/ — 1)B is integral. Apply s#omo, (
splitting,

Ox) to this splitting to obtain a dual

—

(3)  Ox e FIOx((1=p)\Kx — H) +—— FFOx((1 = p)(Kx + B) — H) < O

The image of 1 under ¢ determines a divisor D” which is linearly equivalent to (1—p’)(Kx+
B) — H. Set Ay = 715 D". Note that

—1

H
pl—1

KX+B+A2NQ

which is anti-ample. Also note that the splitting in line (3)) demonstrates the pair (X, B+As)
to be globally sharply F-split. Even better, line also demonstrates (X, B+ Ay + ZﬁH )
to be globally sharply F-split.
We now make use of Lemma below to complete the proof. In addition to the globally
F-regular pair (X, B), we have constructed divisors A; and A, satisfying
(i) (X, B+ Ay) is globally sharply F-split with Kx + B + Ay ~g 0; and
(ii) (X, B + Ay) is globally sharply F-split with Kx + B + A, anti-ample.
(iii) (X, B 4+ Ay + dH) is globally sharply F-split for some small positive 6.
Now we apply Lemma [L.6]i) to the divisors described in (i) and (iii) above. We thus fix
positive rational numbers €1, €5, with €; + €, = 1 such that

(X, El(B + Al) + EQ(B + AQ + (SH)) = (X,B + EQAQ + €1A1 + 625H)

is globally sharply F-split. Since the support of A is contained in the support of H, it
follows from Lemma [1.2] that

(4) (X, B + €2A2 + (61 + 6/)A1)
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is globally sharply F-split for some small positive €. But also (X, B + €3A,) is globally
F-regular, as one sees by applying Lemma [1.6{iii) to the globally F-regular pair (X, B) and
the globally sharply F-split pair (X, B + A,).

Finally, another application of Lemma (iii), this time to the globally F-regular pair
(X, B + €2\;) and the globally sharply F-split pair of line (), implies that (X, B + €2/, +
€14\1) is globally F-regular. Set A = ¢;A; + €2A5. We conclude that the pair (X, B+ A) is
globally F-regular, and

Kx+B+A=¢(Kx+B+A)+ea(Kx+ B+ A)

is anti-ample (from (i) and (ii) just above). This completes the proof of (i) and hence
Theorem [L3l O

Lemma 1.6. Consider two pairs (X, B) and (X, D) on a normal F-finite scheme X.

(i) If both pairs are globally sharply F-split, then there exist positive rational numbers
€ arbitrarily close to zero such that the pair (X,eB + (1 — €)D) is globally sharply
F-split.

(i) If (X, B) is globally F-regular and (X, D) is globally sharply F-split, then there exist
positive rational numbers € arbitrarily close to zero such that the pair (X, eB+(1—e¢)D)
15 globally F-reqular.

(iii) In particular, if (X, B) is globally F-regular and (X, B4+A) is globally sharply F-split,
then (X, B+ 0A) is globally F-reqular for all rational 0 < § < 1.
In (i) and (ii), the number € can be assumed to have denominator not divisible by p.
Proof of Lemma([1.6 First note that (iii) follows from (ii) by taking D to be (B+ A). Since
(1 —€) can be taken to be arbitrarily close to 1, we can choose it to exceed any given § < 1.

Hence, the pair (X, B + dA) is globally F-regular for all positive § < 1, by Lemma [1.2]
For (i), we prove that we can take e to be any rational number of the form

__pr-i
(5) €= p(e-i-f) —1

where e and f are sufficiently large and divisible (but independent) integers. Take e large
and divisible enough so there exists a map ¢ : FfOx([(p® — 1)B]) — Ox which splits the
map Ox — FfOx([(p® — 1)B]). Likewise, take f large and divisible enough so there exists
amap ¢ : F/Ox([(p/ —1)D]) — Ox which splits the map Ox — F/Ox([(p’ —1)D]).
Consider the splitting
Ox — F:Ox([(p = 1)B]) = Ox.

Because all the sheaves above are reflexive and X is normal, we can tensor with Ox ([(p/ —
1)D] to obtain a splitting

Ox([(p! = 1)D]) — FeOx([(p° = )B] +p°[(p* — 1)D]) — Ox([(p’ — 1)D]).
Applying F/ to this splitting, and then composing with 1) we obtain the following splitting,
Ox — FeHOx([(p° = 1)B] +p°[(p" — 1)D]) — Ox

However, we also note that

[(p° = 1)B] +p°[(p/ —1)D] 42 [(p° = 1)B+p°(p’ —1)D]



which implies that we also have a splitting
Ox —— FSHOx([(p° — 1)B +p°(p! —1)D]) — Ox

If we then multiply (p¢ — 1)B + p¢(p/ — 1)D by m, the proof of (i) is complete for the
choice of e given in line [j

Now, to prove (ii), we use Theorem . Choose an effective integral divisor C' whose
support contains the support of D and such that the pair (X \ C, D|x\¢) is globally F-
regular. Since there exists a splitting of

Ox — FIOx([(p" =1)B +CY),

it follows that the pair (X, B + IﬁC) is globally sharply F-split. Applying part (i) of the
Lemma to the pairs (X, B + pf%lC) and (X, D), we conclude that

(X,e(B + C)+ (1—¢€)D)

pl =1
is globally sharply F-split. Re-writing, we have
(X,eB+ (1—€)D+¢€0)

is globally sharply F-split for € and ¢ arbitrarily close to zero.

We now apply Theorem |1.4]to the pair (X, A) = (X,eB+ (1 —¢)D). Restricted to X \ C,
this pair is globally F-regular, and we’ve just shown that for sufficiently small €, the pair
(X, A+€C) is globally sharply F-split. Using Lemmall.4]we conclude that (X, A) is globally
F-regular.

Finally, note that because of the explicit choice of € in line (3), it is clear its denominator
can be assumed not divisible by p. 0

Corollary 1.7. If X is globally F-reqular, then X there exists a divisor A > 0 such that
(X, A) is log Fano.

Straightforward techniques involving cones imply the following converse.

Theorem 1.8. Let X be a normal projective variety over a field of characteristic zero. If
(X, A) is a Kawamata log terminal pair such that Kx + A is anti-ample (ie, (X, A) is log
Fano), then (X, A) has globally F-regular type.

Proof. The idea of the proof is the following lemma. X in characteristic p > 0 is globally
F-regular if and only if the section ring with respect to an ample divisor is strongly F-
regular. Also, for X in characteristic zero, (X,A) is log Fano if and only if the section
ring pair (5, Ag), associated to an ample divisor, is Kawamata log terminal. Now reduce to
characteristic p > 0. 0

Theorem 1.9. Let X be a normal projective variety over a field of prime characteristic. Let
L be a Cartier divisor on X such that L ~o M + A, where M is a nef and big Q-divisor and
the pair (X, A) is globally F-reqular. Then H'(X,Ox(—L)) =0 for i < dim X.

Proof. Because L is big, we can fix f > 0 so that there exists an effective F linearly equivalent
to p/ L. By taking f larger if necessary, we can also assume that for all large and sufficiently
divisible e,
(1) p/(p® — 1)A and p/ (p® — 1) M are integral,
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(2) Ox (' (p° — 1)L) = Ox (' (p° — (M + Q)).
Since M is nef and big, there exists an effective divisor D such that nM — D is ample for
all n > 0; see [Laz04, Cor 2.2.7]. Because (X, A) is globally F-regular, for all sufficiently
large integers g, the map

Ox — FIOx([(p? —1)A]l+ D+ E)

splits. By choosing g large enough, we may assume that ¢ = f + e where f is the fixed
integer above and e > 0 is such that both (1) and (2) are satisfied above. Also, we can
assume that p/(p® — 1)M — D is ample. Therefore, the map

Ox — FHOx(p'(p° —1)A+ D + E)

splits since pf (p® — 1)A < [(p**/ — 1)A]. Tensoring (on the smooth locus, and extending as
usual) with Ox(—L) and taking cohomology, we have a splitting of the map

H(X, Ox(~L)) = H'(X, FH Ox (—p™/ L+ p/ (o = )A+ D + E)).

In particular, this map on cohomology is injective for all sufficiently large and divisible e.
However,

—p L+ (p° —1)A+ D+ E =

—(p =L —p' L+ p'(p° = 1)A+D + E ~

(—p' (0 =DM =/ (p* = DA) +p'(p° = 1)A+ D+ (E—p'L) ~
—p'(p* —1)M + D

which is anti-ample. Therefore, H (X, Ox(—p**/L + p/(p® — 1)A + D + E)) vanishes for
i < dim X since X is globally F-regular, by [Smi00, Corollary 4.4], see also [BK05]. Because
of the injection above, it follows that H* (X, Ox(—L)) vanishes, and the proof is complete. [

2. CRITERIA FOR F-SPLITTING OF VARIETIES

In the past, we've see Fedder’s criteria for Frobenius splitting of algebraic varieties. Now,
suppose that X is a variety over an algebraically closed field of characteristic p > 0. We
will discuss the Mehta-Ramanathan criterion of Frobenius splitting, which is very useful in
practice.

We’ve recently discussed using Cartier-operator as a way to construct explicitly the dual
of Frobenius, Fiwx — wx. Recall this was constructed as follows: we have the isomorphism
C7!: Q%(logE) & H (F.(Q%(log E)). Take E = 0 and i = d = dim X, this give us
wx = HY(F.Q%). But for i > d, the terms F,Q% of the complex F,Q% are zero, and so we
have a surjection Fywyx — wy. This can be identified with the canonical dual of Frobenius.

Lemma 2.1. [BK05, Lemma 1.3.6] Suppose that x € X is a smooth point of an n-dimensional
variety X over an algebraically closed field k. Then the map T : F.wx — wy is described by
the following formula. For any set of generators tq,...,t, of the maximal ideal of Ox ,

T(fdty N--- Ndt,) = S(f)dty A--- Ndt,

where S is defined on k[[ty, ... t,]] D Ox., as the map which sends the monomial 8" .. . tP~1

to 1 and the other monomials to zero.
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This proof is taken from [BKO05|. Certainly dt; A ...dt, generates wy as an Ox-module as
well, which identifies wx, with Ox,. The completion of wy/d(Q% ") is thus identified
with k[[x1,...,z,]]/J where J is the vector-space spanned by all partial derivatives of h €
k[[x1,...,x,). To see this, simply note that

d(hdt;) = Ohdtdt, A --- A dt,.
Thus, J is made up of all power series > a;t' where p /(i; + 1) for some 1 < j < n. In

other words, k[[x1,...,2,]]/J is the set of power-series of the form Y a;tP~1#. But this
is obviously identified with (k[[t1,...,t,]])?, and unraveling our identifications yields the
desired formula. U

Following Brion and Kumar, we also obtain the following:

Proposition 2.2. [BK05, Proposition 1.3.7] Let X be a nonsingular variety. Then the
following map n s an isomorphism. The map n

n: Homp, (wx, Fuwx) — A ome, (F.Ox,Ox)
is defined as follows: Working locally, fix a local generator w for wx,. Furthermore, for
Y € Homo, , (Wxa Fiwxe) and f € Oxg, we define (1) f to be the w coefficient of
T(fv(w)).

This is well defined and furthermore, we obtain the following commutative diagram

%Omox (wX,F*wX) L) %Omox (F*Ox, Ox)

TJ( leval at 1

Homp, (wx,wy) ——— Hom(Ox, Ox)
where Kk is the natural isomorphism.
Proof. Fix g € Ox,. Then notice that n(¢ - g) is defined by the rule
T(fo(gw))/w =T(fg"(w))/w = gT(fo(w))/w

In particular, n is F,Ox-linear.
We now show that our local definition of 1 is well defined. Suppose that w’ = uw for some
unit u € Ox .. With this, we define a new map 7', where 1/ (¢¥)(f) = T(f¢(w'))/w'. So,

n (W) (f) = T(f(W)/w" =T(fp(w)) /" =T (fuPp(w)) /" = uT(fih(w))/(uw) = n(¥)(f).
Now we show that the diagram commutes. Given ¢ € #omp, (wx, Fiwy), the left-vertical
arrow is defined by:
(T(W)(fw) =T(P(fw)) = fT(P(w)).
In particular, x(7'(¢)) is the map obtained by multiplication by 7'(¢(w))/w. On the other
hand, the composition of 17 with the right vertical arrow is just

n(¥)(1) = T(¢(w))/w.
Therefore, the diagram commutes as desired.

Finally, we show that 7 is an isomorphism. We work locally and fix a minimal set of
generators o1, . . ., T, for the maximal ideal of Ox . Notice that i) € JZomo, , (Wx .z, Fiwx.a),
defined by the rule

Y(fdty A+ Ndty) = fPdty A--- ANdty,
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This map clearly generates J#omo, (wx ., Fiwx ) as an F,Ox -module. Now, n(¢)(f) =
T(fY(w))/w = T(fw) = S(f). In particular, since S generates Homo, , (F.Ox 2, Ox.),
we see that 7 is surjective, and thus it is an isomorphism since both modules are rank-1
F,.Ox-modules. O
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