F-SINGULARITIES AND FROBENIUS SPLITTING NOTES 11/18-2010

KARL SCHWEDE

1. Finitistic test ideals, tight closure for modules, and tight closure of pairs

Let us prove another variant of this below, first however, a lemma.

Lemma 1.1. Suppose that R is a d-dimensional F-finite local domain. Then $H^d_{\mathfrak{m}}(R) \otimes F^e_*R$ is naturally identified with $H^d_{\mathfrak{m}}(F^e_*R)$.

Proof. Choose a system of parameters x_1, \ldots, x_d for R, and compute local cohomology in terms of the Čech complex with respect to those parameters. $H^d_{\mathfrak{m}}(R)$ is then identified with the cokernel of the map

$$\bigoplus R_{\hat{x_i}} \to R_{x_1...x_d}.$$

Tensoring that map with F^e_*R , gives us the term of the Čech complex corresponding to the system of parameters $x_1^{p^e}, \ldots, x_d^{p^e}$. This completes the proof, in fact one also sees that $H^d_{\mathfrak{m}}(R) \to H^d_{\mathfrak{m}}(R) \otimes F^e_*R$ is identified with $H^d_{\mathfrak{m}}(R) \to H^d_{\mathfrak{m}}(F^e_*R)$.

Proposition 1.2. [Smi97] Suppose that R is a d-dimensional F-finite local domain. Then the tight closure of zero in $H^d_{\mathfrak{m}}(R)$ is the unique largest non-zero module $M \subseteq H^d_{\mathfrak{m}}(R)$ such that $F(M) \subseteq M$ where $F: H^d_{\mathfrak{m}}(R) \to H^d_{\mathfrak{m}}(R) = F_*H^d_{\mathfrak{m}}(R) = H^d_{\mathfrak{m}}(F_*R)$ is the map induced by Frobenius.

Proof. For simplicity, we assume that R is complete, in the general case use the faithfull flatness of $\operatorname{Hom}_R(\underline{\ },E)$. First we show that $F(0^*_{H^d_{\mathfrak{m}}(R)})\subseteq 0^*_{H^d_{\mathfrak{m}}(R)}$. Suppose that $z\in 0^*_{H^d_{\mathfrak{m}}(R)}$. Thus there exists $c\in R$ such that $0=cz^{p^e}\in H^d_{\mathfrak{m}}(R)\otimes F^e_*R$ for all $e\geq 0$ (by the previous lemma, we need not be careful about tensor products). Then $0=c^p(z^p)^{p^e}\in H^d_{\mathfrak{m}}(R)$, so $F(z)\in 0^*_{H^d_{\mathfrak{m}}(R)}$.

Now suppose that N is any proper submodule of $H^d_{\mathfrak{m}}(R)$ such that $F(N) \subseteq N$. We know that $T := \operatorname{Hom}_R(H^d_{\mathfrak{m}}(R)/N, E) \subseteq \operatorname{Hom}_R(H^d_{\mathfrak{m}}(R), E) = \omega_R$. But ω_R is rank-one, so there exists a $c \in R$ such that $c\omega_R \subseteq T$, thus we have the composition

$$c\omega_R \subseteq T \subseteq \omega_R$$
.

Dualizing again, we get

$$H^d_{\mathfrak{m}}(R) \to H^d_{\mathfrak{m}}(R)/N \to cH^d_{\mathfrak{m}}(R)$$

where the composition is multiplication by c. This implies that N is annihilated by c. Thus if $z \in N$, $cz^{p^e} = cF^e(z) \in cF^e(N) \subseteq cN = 0$ for all $e \ge 0$, implying that $z \in 0^*_{H^d_{\mathfrak{m}}(R)}$ and completing the proof.

Finally, we briefly define tight closure of pairs.

Definition 1.3. [Tak04], [HY03], [Sch08b], [Sch08a], [HH90] Suppose R is an F-finite domain, $X = \operatorname{Spec} R$ and $(X, \Delta, \mathfrak{a}^t)$ is a triple. Further suppose that M is a (possibly non-finitely generated) R-module and that N is a submodule of M. We say that an element $z \in M$ is in the (Δ, \mathfrak{a}^t) -tight closure of N in M, denoted $N_M^{*\Delta, \mathfrak{a}^t}$, if there exists an element $0 \neq c \in R$ such that, for all $e \gg 0$ and all $a \in \mathfrak{a}^{\lceil t(p^e-1) \rceil}$, the image of z via the map

$$(F_*^e i) \circ \mathbb{F}_*^e (\times ca) \circ F^e : M \longrightarrow M \otimes_R F_*^e R \xrightarrow{F_*^e (\times ca)} M \otimes_R F_*^e R \longrightarrow M \otimes_R F_*^e R (\lceil (p^e - 1)\Delta \rceil)$$

is contained in $N_M^{[q]\Delta}$, where we define $N_M^{[q]\Delta}$ to be the image of $N \otimes_R F_*^e R(\lceil (p^e - 1)\Delta \rceil)$ inside $M \otimes_R F_*^e R(\lceil (p^e - 1)\Delta \rceil)$.

Most of the theory of test elements / ideals can be generalized to this setting, although some of the arguments used so far do not work. See [HY03], [Tak04], [Sch08b] and [Sch08a] for some additional discussion.

2. Hara's surjectivity lemma

Our goal is to show the following theorem.

Lemma 2.1. [Har98] Suppose that R_0 is a ring of characteristic zero, $\pi: \widetilde{X}_0 \to \operatorname{Spec} R_0$ is a log resolution of singularities, D_0 is a π -ample \mathbb{Q} -divisor with simple normal crossings support. We reduce this setup to characteristic $p \gg 0$. Then the natural map

$$(F^e)^{\vee} = \Phi_{\widetilde{X}} : F_*^e \omega_{\widetilde{X}}(\lceil p^e D \rceil) \to \omega_{\widetilde{X}_n}(\lceil D \rceil)$$

surjects.

We will show it in the following way. We follow Hara's proof.

Proposition 2.2. Suppose that X is a d-dimensional smooth variety (quasi-projective) of finite type over a perfect field k of characteristic p > 0. ¹ Further suppose that $E = \sum E_j$ is a reduced simple normal crossings divisor on X. Suppose in addition that D is a \mathbb{Q} -divisor on X such that $\operatorname{Supp}(D - \lfloor D \rfloor) = \operatorname{Supp}(\{D\}) \subseteq \operatorname{Supp}(E)$.

Additionally, suppose that the following two vanishings hold:

- (a) $H^j(X, \Omega^i_X(log E)(-E \lfloor -D \rfloor)) = 0$ for i + j = d + 1 and j > 1.
- (b) $H^j(X, \Omega_X^i(logE)(-E-\lfloor -pD \rfloor)) = 0$ for i+j=d and j>0.

Then, the natural map

$$H^0(X, F_*\omega_X(\lceil pD \rceil)) = \operatorname{Hom}_{\mathcal{O}_X}(F_*\mathcal{O}_X(\lfloor -pD \rfloor), \omega_X) \to \operatorname{Hom}_{\mathcal{O}_X}(\mathcal{O}_X(\lfloor -D \rfloor), \omega_X) = H^0(X, \omega_X(\lceil D \rceil))$$
 surjects.

Our plan is as follows:

- (i) Prove the proposition.
- (ii) Show for an ample \mathbb{Q} -divisor D reduced from characteristic $p \gg 0$, conditions (a) and (b) hold.
- (iii) The e-iterated version of Hara's lemma will then follow from composing the surjectivity from the proposition and composition of maps.

We may as well assume $k = \mathbb{F}_p$ for simplicity, we'll only want this for finite fields, and all the arguments are essentially the same as over \mathbb{F}_p .

In order to prove the proposition, we will need to briefly recall the Cartier operator. From here on out, X and E are as in Proposition 2.2. Consider the (log)de-Rham complex, $\Omega_X^{\bullet}(\log E)$. This is not a complex of \mathcal{O}_X -modules (the differentials are not \mathcal{O}_X -linear). However, the complex

$$F_*\Omega_X^{\bullet}(\log E)$$

is a complex of \mathcal{O}_X -modules (notice that $d(x^p) = 0$).

Definition-Proposition 2.3. [Car57], [Kat70] [cf [EV92], [BK05]] There is a natural isomorphism (of \mathcal{O}_X -modules):

$$C^{-1}: \Omega_X^i(\log E) \to \mathcal{H}^i(F_*\Omega_X^{\bullet}(\log E))$$

Furthermore, $(C^{-1})^{-1}$ for i = d and E = 0, induces a map $F_*\omega_X \to \mathcal{H}^d(F_*\Omega_X^{\bullet}(\log E)) \cong \omega_X$ which corresponds to the natural dual of Frobenius².

Let us explain how to construct this isomorphism C^{-1} . We follow [EV92, 9.13] and [Kat70]. We begin with C^{-1} in the case that i=1 and E=0. We work locally on X (which we assume is affine) and we define C^{-1} by its action on $dx \in \Omega_X^i(\log E)$, $x \in \mathcal{O}_X$; $C^{-1}(dx) = x^{p-1}dx$ (or rather, its image in cohomology). In the $E \neq 0$ case, if t is a local parameter of E, then we define $C^{-1}(\frac{dt}{t}) = dt/t$.

We should show that C^{-1} is additive, we start in the E=0 case. First notice that $d(x^{p-1}dx)=0$ so at least the image of $x^{p-1}dx$ is in the cohomology of the de Rham complex. Now, $C^{-1}(d(x)+d(y))=C^{-1}(d(x+y))=(x+y)^{p-1}d(x+y)$, we need to compare this to $x^{p-1}dx+y^{p-1}dy$. Write $f=\frac{1}{p}\left((x+y)^p-x^p-y^p\right)$ (where the $\frac{1}{p}$ just formally cancels out the ps in the binomial coefficients). Then

$$df = d \sum_{i,j>0, i+j=p} \gamma_i x^i y^{p-i} = \left(\sum_{i>0, j>0, i+j=p-1} \gamma_i i x^{i-1} y^{p-i} \right) dx + \left(\sum_{i>0, j>0, i+j=p-1} \gamma_i p - i x^i y^{p-i-1} \right) dy$$

where
$$\gamma_i = \frac{1}{p} \binom{p}{i} = \frac{(p-1)(p-2)...1}{i!(p-i)!} = \frac{1}{p-i} \binom{p-1}{i} = \frac{1}{i} \binom{p-1}{p-i}$$
. Thus

$$df = (x+y)^{p-1}(dx+dy) - x^{p-1}dx - y^{p-1}dy.$$

Therefore, $x^{p-1}dx + y^{p-1}dy$ and $(x+y)^{p-1}d(x+y)$ are the same in cohomology.

For the $E \neq 0$ case and t a defining equation of a component of E, simply observe that

$$C^{-1}(dt) = C^{-1}\left(t\frac{dt}{t}\right) = t^p C^{-1}\left(\frac{dt}{t}\right) = t^p \frac{dt}{t} = t^{p-1}dt,$$

which at least shows that the definition of C^{-1} we gave is compatible, the additivity follows. We define C^{-1} for i > 1 using wedge powers of C^{-1} for i = 1. We should also show that all these C^{-1} are isomorphisms. For simplicity, we work with the case that $X = \mathbb{F}_p[x, y]$ and E = 0 (see [EV92] or [Kat70] for how to reduce the polynomial ring case in general), let us explicitly see that the first C^{-1} is an isomorphism.

First we show that C^{-1} is injective. Suppose that $C^{-1}(fdx + gdy) = 0$, which means $C^{-1}(fdx + gdy) = dh$ for some $h \in \mathcal{O}_X$. Thus $f^p x^{p-1} dx + g^p y^{p-1} dy = dh = \frac{\partial h}{\partial x} dx + \frac{\partial h}{\partial y} dy$. Now, we know $f^p x^{p-1} = \sum \lambda_{i,j} y^{ip} x^{jp+p-1} = \frac{\partial h}{\partial x}$, but this is ridiculous because we claim that

²This is important, it gives us a "canonical" map between these two modules (before it was always defined up to multiplication by units)

this is the derivative of some h with respect to x. If you take a derivative of some polynomial in x with respect to x, no output can ever have x^{jp+p-1} in it.

The surjectivity of C^{-1} is more involved. See for example, [], [] or [], and follows similar lines to the proof of the next lemma. The isomorphism of the higher C^{-1} is an application of the Künneth formula.

We also need the following lemma.

Lemma 2.4. [Har98, Lemma 3.3] With notation as in Proposition 2.2, additionally let $B = \sum r_j E_j$ be an effective integral divisor supported on E such that each $0 \le r_j \le p-1$. It follows that the inclusion of complexes (of \mathcal{O}_X^p -modules)

$$\Omega_X^{\bullet}(\log E) \hookrightarrow (\Omega_X^{\bullet}(\log E))(B) := (\Omega_X^{\bullet}(\log E)) \otimes_{\mathcal{O}_X} \mathcal{O}_X(B)$$

is a quasi-isomorphism.

Proof. First we explain the differential on $(\Omega_X^{\bullet}(\log E))(B)$ because the tensor product with B is as an \mathcal{O}_X -module, it is not so clear what the differential is. However, we simply restrict the differential from $i_*\Omega_{X\setminus E}^{\bullet}$ to $(\Omega_X^{\bullet}(\log E))(B)$.

Now, the question is local, so we assume that X is the spectrum of a local ring. Choose t_1, \ldots, t_d to be local parameters (which also form a p-basis), where the components E_i of E are defined by t_1, \ldots, t_r respectively. Consider the complexes:

$$\mathscr{K}_{j}^{\bullet} = \left[0 \to \bigoplus_{i=0}^{p-1} t_{j}^{i} \mathcal{O}_{X}^{p} \to \bigoplus_{i=0}^{p-1} (t_{j}^{i} \frac{dt_{j}}{t_{j}^{\varepsilon_{j}}}) \mathcal{O}_{X}^{p} \right]$$

where the middle-map is the usual d and where $\varepsilon_j = 1$ if $j \leq r$ and is zero otherwise. Set

$$\mathscr{J}_{i}^{\bullet} = t_{i}^{-r_{j}} \mathscr{K}_{i}^{\bullet},$$

for $j \leq r$.

We certainly have inclusions $\mathscr{K}_j^{\bullet} \subseteq \mathscr{J}_j^{\bullet}$, we claim that these are actually quasi-isomorphisms. We work in a very specific case, that of k[x,y] where $E=\div X$. We only look at \mathscr{K}_1 , of course the general case is exactly the same. We have the inclusion of complexes:

$$\bigoplus_{i=0}^{p-1} x^{i} \mathcal{O}_{X}^{p} \longrightarrow \bigoplus_{i=0}^{p-1} x^{i} \frac{dx}{x}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\bigoplus_{i=0}^{p-1} x^{i-r} \mathcal{O}_{X}^{p} \longrightarrow \bigoplus_{i=0}^{p-1} x^{i-r-1} dx.$$

One can easily verify that the cokernel and kernel of the two rows "line-up" because r is between 0 and p-1. Thus we have proved our claim.

Now, we claim that

$$\Omega_X^{\bullet}(\log E) = \mathscr{K}_1^{\bullet} \otimes_{\mathcal{O}_X^p} \mathscr{K}_2^{\bullet} \otimes \ldots \otimes_{\mathcal{O}_X^p} \mathscr{K}_d^{\bullet}.$$

We'll check this for $X = \operatorname{Spec} \mathbb{F}_p[x,y]$ and E = 0. Here $\mathscr{K}_1 = \left[\bigoplus_{i=0}^{p-1} x^i \mathcal{O}_X^p \to \bigoplus_{i=0}^{p-1} (x^i dx) \mathcal{O}_X^p\right]$, and likewise $\mathscr{K}_2 = \left[\bigoplus_{i=0}^{p-1} y^i \mathcal{O}_X^p \to \bigoplus_{i=0}^{p-1} (y^i dy) \mathcal{O}_X^p\right]$. Thus $\mathscr{K}_1^{\bullet} \otimes \mathscr{K}_2^{\bullet}$ is the complex associated to the double-complex

$$\mathscr{K}_1^1 \otimes_{\mathcal{O}_X^p} \mathscr{K}_2^0 \cong (dx)\mathcal{O}_X \qquad \mathscr{K}^1 \otimes_{\mathcal{O}_X^p} \mathscr{K}^2 \cong (dx \wedge dy)\mathcal{O}_X$$

$$\mathscr{K}_1^0 \otimes_{\mathcal{O}_X^p} \mathscr{K}_2^0 \cong \mathcal{O}_X ar[u] \longrightarrow \mathscr{K}_1^0 \otimes_{\mathcal{O}_X^p} \mathscr{K}_2^1 \cong (dy)\mathcal{O}_X$$

The general case is similar, but messy to write down.

Arguing similarly, we have that

$$\Omega_X^{\bullet}(\log E)(B) \cong \mathscr{J}_1^{\bullet} \otimes \dots \mathscr{J}_r^{\bullet} \otimes \mathscr{K}_{r+1}^{\bullet} \otimes \dots \mathscr{K}_d^{\bullet}$$

and we have the natural (compatible) inclusion $\Omega_X^{\bullet}(\log E) \to \Omega_X^{\bullet}(\log E)(B)$ which are quasi-isomorphisms by the Künneth formula.

References

- [BK05] M. Brion and S. Kumar: Frobenius splitting methods in geometry and representation theory, Progress in Mathematics, vol. 231, Birkhäuser Boston Inc., Boston, MA, 2005. MR2107324 (2005k:14104)
- [Car57] P. Cartier: Une nouvelle opération sur les formes différentielles, C. R. Acad. Sci. Paris 244 (1957), 426–428. 0084497 (18,870b)
- [EV92] H. ESNAULT AND E. VIEHWEG: Lectures on vanishing theorems, DMV Seminar, vol. 20, Birkhäuser Verlag, Basel, 1992. MR1193913 (94a:14017)
- [Har98] N. HARA: A characterization of rational singularities in terms of injectivity of Frobenius maps, Amer. J. Math. 120 (1998), no. 5, 981–996. MR1646049 (99h:13005)
- [HY03] N. HARA AND K.-I. YOSHIDA: A generalization of tight closure and multiplier ideals, Trans. Amer. Math. Soc. **355** (2003), no. 8, 3143–3174 (electronic). MR1974679 (2004i:13003)
- [HH90] M. HOCHSTER AND C. HUNEKE: Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), no. 1, 31–116. MR1017784 (91g:13010)
- [Kat70] N. M. Katz: Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin, Inst. Hautes Études Sci. Publ. Math. (1970), no. 39, 175–232. 0291177 (45 #271)
- [Sch08a] K. Schwede: Centers of F-purity, arXiv:0807.1654, to appear in Mathematische Zeitschrift.
- [Sch08b] K. Schwede: Generalized test ideals, sharp F-purity, and sharp test elements, Math. Res. Lett. 15 (2008), no. 6, 1251–1261. MR2470398
- [Smi97] K. E. SMITH: F-rational rings have rational singularities, Amer. J. Math. 119 (1997), no. 1, 159–180. MR1428062 (97k:13004)
- [Tak04] S. Takagi: An interpretation of multiplier ideals via tight closure, J. Algebraic Geom. 13 (2004), no. 2, 393–415. MR2047704 (2005c:13002)