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1. FINITISTIC TEST IDEALS, TIGHT CLOSURE FOR MODULES, AND TIGHT CLOSURE OF
PAIRS

Let us prove another variant of this below, first however, a lemma.

Lemma 1.1. Suppose that R is a d-dimensional F-finite local domain. Then Hi(R) ® F¢R
is naturally identified with HL(F¢R).

Proof. Choose a system of parameters x1,...,z4 for R, and compute local cohomology in
terms of the Cech complex with respect to those parameters. HZ(R) is then identified with
the cokernel of the map

@R:@ - Rasl...xd-

Tensoring that map with FCR, gives us the term of the Cech complex corresponding to

the system of parameters x’l’e, e ,xze. This completes the proof, in fact one also sees that
H3(R) — H%(R) ® F¢R is identified with H4(R) — H(F°R). O

Proposition 1.2. [Smi97] Suppose that R is a d-dimensional F-finite local domain. Then
the tight closure of zero in HZ(R) is the unique largest non-zero module M C HS(R) such
that F(M) C M where F : HL(R) — H%(R) = F,H.(R) = H3(F.R) is the map induced by
Frobenius.

Proof. For simplicity, we assume that R is complete, in the general case use the faithfull
flatness of Hompg(__, ). First we show that F(O*Hg(R)) C 0%a (- Suppose that z € Ok ()
Thus there exists ¢ € R such that 0 = ¢z’ € HL(R) @ FCR for all e > 0 (by the previous
lemma, we need not be careful about tensor products). Then 0 = P(zP)”" € HZ(R), so
F(2) € 03y

Now suppose that N is any proper submodule of HZ(R) such that F(N) C N. We know
that T := Homp(H%(R)/N, E) C Homgp(H(R), E) = wg. But wg is rank-one, so there
exists a ¢ € R such that cwr C T, thus we have the composition

cwgp CT C wg.
Dualizing again, we get
H%(R) — HL(R)/N — cHZ(R)
where the composition is multiplication by c¢. This implies that N is annihilated by ¢. Thus

if 2z € N, cz!" = cF°(z) € cF*(N) C ¢N = 0 for all ¢ > 0, implying that z € 0%a () and

completing the proof. O

Finally, we briefly define tight closure of pairs.
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Definition 1.3. [Tak04], [HY03], [SchO8b], [Sch08al], [HH90] Suppose R is an F-finite do-
main, X = Spec R and (X, A, a") is a triple. Further suppose that M is a (possibly non-
finitely generated) R-module and that N is a submodule of M. We say that an element
z € M is in the (A, a")-tight closure of N in M, denoted NX/[A’at, if there exists an element
0 # ¢ € R such that, for all e > 0 and all @ € al*®*~DI the image of 2 via the map

F¢(xca

(Fei) o FS(xca) o F* : M —— M @p FR-CYM @ FER —— M @p FER([(p° — 1)A])

is contained in N][\Z]A, where we define N][\Z]A to be the image of N ®p FER([(p® — 1)A])
inside M ®@g FER([(p® — 1)A]).

Most of the theory of test elements / ideals can be generalized to this setting, although
some of the arguments used so far do not work. See [HY03], [Tak04], [SchO8b] and [Sch08a]
for some additional discussion.

2. HARA’S SURJECTIVITY LEMMA

Our goal is to show the following theorem.

Lemma 2.1. [Har98] Suppose that Ry is a ring of characteristic zero, w : )N(O — Spec Ry
1 a log resolution of singularities, Dy is a m-ample Q-divisor with simple normal crossings
support. We reduce this setup to characteristic p > 0. Then the natural map

(F)" = &5 : Flwg([p°D]) — wg ([D])
surjects.
We will show it in the following way. We follow Hara’s proof.

Proposition 2.2. Suppose that X is a d-dimensional smooth variety (quasi-projective) of
finite type over a perfect field k of characteristic p > 0. E| Further suppose that E =) E; is
a reduced simple normal crossings divisor on X. Suppose in addition that D is a Q-divisor
on X such that Supp(D — |D]) = Supp({D}) C Supp(E).
Additionally, suppose that the following two vanishings hold:
(a) HI(X,Q%(logE)(—E — |-D])) =0 fori+j=d+1and j > 1.
(b) H/ (X, Q% (logE)(—E — |—pD|)) =0 fori+j=d and j > 0.
Then, the natural map
H°(X, Fwx([pD1)) = Homo, (F.Ox (| ~pD]),wx) — Homo, (Ox(|-D]),wx) = H(X,wx([D]))

surjects.

Our plan is as follows:

(i) Prove the proposition.
(ii) Show for an ample Q-divisor D reduced from characteristic p > 0, conditions (a)
and (b) hold.
(iii) The e-iterated version of Hara’s lemma will then follow from composing the surjec-
tivity from the proposition and composition of maps.

IWe may as well assume k = I, for simplicity, we’ll only want this for finite fields, and all the arguments
are essentially the same as over IFp.
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In order to prove the proposition, we will need to briefly recall the Cartier operator.
From here on out, X and E are as in Proposition 2.2} Consider the (log)de-Rham complex,
Q% (log E). This is not a complex of Ox-modules (the differentials are not Ox-linear).
However, the complex

F.Q%(log E)
is a complex of Ox-modules (notice that d(z?) = 0).

Definition-Proposition 2.3. [Car57], [Kat70] [cf [EV92], [BKO5]] There is a natural iso-
morphism (of Ox-modules):

Ct:Q4(logE) — H'(F.Q%(log E))

Furthermore, (C~1)7! for i = d and E = 0, induces a map F.wyx — HY(F.Qx(log E)) & wy
which corresponds to the natural dual of Frobeniug?

Let us explain how to construct this isomorphism C' . We follow [EV92, 9.13] and [Kat7()].
We begin with C~! in the case that i = 1 and E = 0. We work locally on X (which we assume
is affine) and we define C~! by its action on dz € Q% (logE), z € Ox; C~'(dx) = 2P~ dx
(or rather, its image in cohomology). In the E # 0 case, if ¢ is a local parameter of E, then
we define C~1 (%) = dt/t.

We should show that C~! is additive, we start in the £ = 0 case. First notice that
d(zP~dz) = 0 so at least the image of #P~'dx is in the cohomology of the de Rham complex.

Now, C~(d(x) + d(y)) = C7H(d(x +y)) = (z + y)P'd(x + y), we need to compare this
to 2P~ tdw + yPtdy. Write f = % ((x + y)? — 2P — yP) (where the % just formally cancels out
the ps in the binomial coefficients). Then

dif=d > yay = ( ) m’x”y’”> d“( > - z’xi?f“) dy
where 3 = 3(7) = Pt = 55 () = 1(2)- Thos

df = (z +y)P ' (dx + dy) — 2P dx — P~ dy.

Therefore, 2P~ 1dx + y?~'dy and (x + y)?~'d(z + y) are the same in cohomology.
For the E #£ 0 case and t a defining equation of a component of F, simply observe that

C_l(dt) =C ! (t%) — PO (%) — tp% — tp_ldt,

which at least shows that the definition of C~! we gave is compatible, the additivity follows.
We define C~! for ¢+ > 1 using wedge powers of C~! for i = 1. We should also show that
all these C'~! are isomorphisms. For simplicity, we work with the case that X = F,[z,y] and
E =0 (see [EV92] or [Kat70] for how to reduce the polynomial ring case in general), let us
explicitly see that the first C~! is an isomorphism.
First we show that C~! is injective. Suppose that C~'(fdz + gdy) = 0, which means
C~!(fdx + gdy) = dh for some h € Ox. Thus fPaf~'dz + g'y?~'dy = dh = $dz + g—’;dy.

Now, we know fPaP~t = 3"\, gy PriPtr—! = %, but this is ridiculous because we claim that
2This is important, it gives us a “canonical” map between these two modules (before it was always defined

up to multiplication by units)
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this is the derivative of some h with respect to x. If you take a derivative of some polynomial
in = with respect to z, no output can ever have z/?*P~1 in it.

The surjectivity of C~! is more involved. See for example, [|, [] or [], and follows similar
lines to the proof of the next lemma. The isomorphism of the higher C~! is an application
of the Kiinneth formula.

We also need the following lemma.

Lemma 2.4. [Har98, Lemma 3.3] With notation as in Proposition additionally let
B =) r;E; be an effective integral divisor supported on E such that each 0 < r; < p — 1.
It follows that the inclusion of complexes (of O%-modules)

Q% (log £)—— (Qx (log £))(B) := (Qx(log £)) ®0 Ox(B)

18 a quasi-isomorphism.

Proof. First we explain the differential on (2% (log E))(B) because the tensor product with
B is as an Ox-module, it is not so clear what the differential is. However, we simply restrict
the differential from .82y, 5 to (Q2x (log E))(B).

Now, the question is local, so we assume that X is the spectrum of a local ring. Choose

t1,...,tq to be local parameters (which also form a p-basis), where the components E; of £
are defined by tq,...,t, respectively. Consider the complexes:
) Op dt OP
0— GBt - &, )
=0

where the middle-map is the usual d and where ¢; = 1 if j <7 and is zero otherwise. Set
5=

for j <.

We certainly have inclusions J¢;° C _#.°, we claim that these are actually quasi-isomorphisms.
We work in a very specific case, that of k[z,y| where E = +X. We only look at #;, of course
the general case is exactly the same. We have the inclusion of complexes:

dx

1_imp ; 7
szO @zoxm

1—1 ()P i—r—1
@z O‘r O H@z Oaj d‘r

One can easily verify that the cokernel and kernel of the two rows “line-up” because r is
between 0 and p — 1. Thus we have proved our claim.
Now, we claim that

Qx(log E) = 1" ®@op Ay @ ... ®or, Ky -
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We'll check this for X = SpecF,[z,y] and E = 0. Here #; = [P, /0% — @, (¢'dx)O%],
and likewise 5 = [BF, y'O% — @I, (y'dy)O%]. Thus #;* ® #," is the complex asso-
ciated to the double-complex

%1 ®(9§( e%/zo = (dﬂ?)@x 1%/1 ®(9§< %2 = (d.ﬁE A dy)OX

K @op Hy = Oxarlu] ——— A, @on, H5! = (dy)Ox

The general case is similar, but messy to write down.
Arguing similarly, we have that

Qx(ogE)B)= /7 ®... 7 K, ® ... 0y

and we have the natural (compatible) inclusion Q% (log E) — Q% (log E)(B) which are quasi-
isomorphisms by the Kiinneth formula. 0
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