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1. TIGHT CLOSURE

Definition 1.1. A finitistic test element 0 # ¢ € R, is an element of R such that for every
ideal I and every z € I*,
cP e P

for all e > 0.

It should be highly unclear that such a test element exists. However, we have already
shown the following lemma.

Lemma 1.2. Giwen an F-finite domain R, there exists 0 # ¢ € R such that for every
0#de R, ce ¢(dR) for some ¢ : FER — R.

Corollary 1.3. The c in the above lemma is a finitistic test element.

Proof. Suppose that 0 # d € R is an element of R such that dz?" € IP7 for all e > 0, it
follows from the statement above that there exists ¢ : F*R — R such that ¢(d) = ¢. Thus,
for e > a,
e = g(d?) € ¢ (1P7) € V.
O

Definition 1.4. The finitistic test ideal 77(R) is defined to be the ideal of R generated by
all finitistic test elements. It can also be described as the set made up of all finitistic test
elements and zero.

Lemma 1.5. We have 74(R) = Nicp({ : I*).

Proof. Suppose that ¢ € 7;R, then czF" € IP for all e > 0, in particular for e = 0. Thus
cz €l and c € Nycr(1 : I*).

Conversely, suppose that ¢ € N;cr(I : I*). Choose z € I*. Then I claim that zP* € (IP")*
for all @ > 0. But ¢z’ € I for all e > 0 so that ¢ (27*)P° € (IP*)lF] for all a, and the
claim is proven. Thus cz?* € I P*] for all @ > 0 because ¢ was chosen in the intersection,
which implies that c is a finitistic test element. 0

Corollary 1.6. R is weakly F-regular if and only if 7¢(R) = R.
We now come to the proof of Briangon-Skoda theorem via tight closure.

Theorem 1.7. [| Let R be an F-finite domain, and (uy,...,u,) = I C R an ideal. Then
for every natural number m,

J[m+n g [m+n71 g ([m)*
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and so
r(R) T+ C I™,
which gives a very nice statement in the case that R is F-reqular (and so 7(R) = R).

This proof is taken from [|. For any y € I™*t"~1 we know that there exists 0 # ¢ € R such
that cy! € (I™™ 1) for all [ > 0. Consider a monomial u{'...u% where a; + -+ + a, =
I(m +n —1)l. Write each a; = bl + r; where 0 < r; <[ — 1. We claim that the sum of
the b; is at least m, which will imply that the monomial is contained in (/™) for all I such
that [ = p®. However, if the sum by + -+ b, < m —1, then I[(m+n—1) = > a; <
Im—1)+n(l—1)=Il(m+n—1)—n <Il(m+n—1), which implies the claim.

Thus cy?” € (I™)* as desired. O

Remark 1.8. Previously, in the proof that test ideals and multiplier ideals coincided after
reduction mod p > 0, we used this theorem on alt(®*~D1+" where r is the number of generators
of a. The tight-closure Briancon-Skoda theorem tells us that this is contained in al*®*=D1,

1.1. Hilbert-Kunz(-Monsky) multiplicity. Recall the following definition:

Definition 1.9. Suppose that (R, m) is a d-dimensional local ring and I is an m-primary
ideal. We define the multiplicity of R (at I) to be

e(l,R) := lim M

n—oo nd

Note that R is regular if and only if e(m, R) = 1.
Using this as a guide, Kunz considered the following notion.

Definition 1.10. [Kun69], [Mon83] Suppose that (R, m) is a d-dimensional local ring. We
define the Hilbert-Kunz-Monsky multiplicity of R (at m) to be

R/ TP
eHKM(Ia R) = lim #
n—in fty pe
Kunz showed that ey gy (m, R) = 1 if R is regular (we basically also did in the first few days
of class), and Watanabe-Yoshida [WY00] (and Huneke-Yao, [HY02]) showed the converse.

Remark 1.11. In fact, this e(/, R) can be viewed as some sort of leading coefficient of a
polynomial computing (R/I™). While it is true that (R/IP) = eggar (1, R)pd + O(p=d—1),
the lower order terms are not generally a polynomial, unlike e(/, R)

Kunz actually thought that this limit didn’t exist, and even had a claimed counter-
example. (Un?)Fortunately, there was a mistake and Monsky later showed that the limit did
indeed exist. The reason we mention it now is the following theorem of Hochster-Huneke.

Theorem 1.12. [HH90] Suppose (R, m) is an equidimensional F-finite local domain. Further
suppose that I C J are two m-primary ideals. Then if J C I* if and only if egrn (I, R) =
eHKM(tL R) .

Proof. We will only prove one direction, for the converse, see [HH90]. Suppose then that
J C I*, in other words, suppose that I* = J*. We first show that there exists a ¢ € R° such
that ¢J4 C 19 for all ¢ > 0. But this is easy, choose a set of generators z, ...,z of J.

Then by hypothesis, there exists a ¢; € R such that c;z? € I9 for all ¢ > 0. Let ¢ be the
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product of the ¢; and note that cx? € 1'% for all ¢ > 0. Therefore, J19 /119 is a module with
at most k generators over R/(I'9 + (c)). Set S = R/(c). Thus J4/I@ is a module with at
most k generators over S/(I5)!%. Note that dim $ < dim R — 1.

But now we know that there is a constant Cg such that A(S/(IS)4 < Cgq" (since
Hilbert-Kunz multiplicities exist). However, we can also map (S/(15)4)®* onto Jl4l /[l
Therefore,

NJ9 /119y < kCgqthd1
Thus A(R/J) — \(R/19) < Cq%" for C = kCgh®1.
Therefore the J and [ have the same Hilbert-Kunz multiplicity. OJ

2. FINITISTIC TEST IDEALS, TIGHT CLOSURE FOR MODULES, AND TIGHT CLOSURE OF
PAIRS

Definition 2.1. [HH90] Given a domain R and R-modules N C M, we consider the natural
map

Ye: M — M ® F{R
for each e. We say that z € M is in the tight closure of N in M if there exists a ¢ € R\ {0}
such that for all e > 0, 7.(2).c = z ® ¢ is contained in the image of N ® FfR — M ® F¢R.

Remark 2.2. Suppose that M = R and N is an ideal. Then the image of N ®p F¢R inside
R®p F'R = F°R is simply NP). Thus this definition of tight closure coincides with the
usual one.

The case we are going to be primarily concerned with is when N = 0 C M. Generally
speaking, one can always reduce to studying this case by the following trick.

Lemma 2.3. Suppose N C M is as above, then z € Ny, if and only if Z € 0%/ -

Proof. Now, z € Ny, if and only if there exists 0 # ¢ € R such that
Ye(2) ® ¢ € Image (N @ FfR — M ® F{R).

But this happens if and only if 7.(z) =0 C (M/N) ® FfR by right exactness of tensor. [

Remark 2.4. In general, given N C M C M’, one has Ni; C Nj,. The problem is that ® is
not left-exact.

Lemma 2.5. Suppose that R s strongly F-regular, then for every R-modules N C M,
N=N;, CM.

Proof. Suppose that z € Nj,;. Thus there exists a 0 # d € R such that z ® d is contained in
the image of N ® Ff'R — M ® F¢R for all e > 0. Choose ¢ : F*R — R which sends d — 1.
We have the following diagram

N FeBY 2,

I
We know that z ® d is in the image of f, let { be an element of N ® F*R which maps to it.
Thus

g9 ((idy ®9)(C)) = (;dM ®¢)(z ®@d) = 2



But g is simply the inclusion of N into M which implies that z € N as desired. 0
We also have the converse statement.

Proposition 2.6. [HH90], [Hoc07] Suppose R is an F-finite local domain and that for every
R-module N C M, N = Nj,, then R is strongly F'-regular.

Proof. Let E denote the injective hull of the residue field R/m. We know 03 = 0 by
assumption. We will show that R is strongly F'-regular.

By hypothesis, 03 = 0. Choose ¢ € R = F{R and consider the map R — F{R
which sends 1 +— ¢. Tensoring with E, gives us a map V.. : £ — E ®pr F{R which
sends z to z ® c¢. Now recall that we have an isomorphism FfR ® Hom(R, E) = FfR ®g
E = Hompg(Hompg(FER, R), E) defined by the map which sends r ® ¢ to the map h :
Hompg(F¢R, R) — E defined by the rule h(a) = ¢(a(r)). Thus £ — E ®@p FR is identified
with

FE = Homg(Homg(R, R), E) — Homg(Homg(F{R, R), E).
The map is just induced by the inclusion R C F¢R in the first entry which sends 1 to c. Apply
Hompg(__, F) and Matlis duality. This gives us a map HomR(FeR R) — HomR(R R) =R
induced by evaluation at c. In particular, 7. . is injective if and only if the evaluation-at-c-
map Hompg(FFR, R) — R is surjective (we can remove the completion signs due to faithful
flatness).

Consider now ¢ = 1, we know that for any z € F, 0 # 2 ® 1 € F® F¢R for infinitely many
e > 0. But if it holds for infinitely many e > 0, then it holds for all e > 0 since 7., factors
through ~._1 1. Therefore, v, is injective and R is F-split.

Now, again consider 7. .. ve. is injective if and only if it is non-zero on the socleﬂ Suppose
that z € ker(7...), in other words 0 = 2®c € EQFFR. We claim that then also z € ker(ye—1..).
However, the composition

FE—SE9F'RI . EQFR

2 QcH——— 2 Q P,

is certainly zero, and since the map f is injective (because R is F-split), this implies that
g(z) =0.

Therefore, the set of kernels of v, . are a descending sequence of modules in F, an artinian
module. Therefore they eventually stabilize. However, no element is in all the kernels because
0% = 0. Thus some evaluation-at-c-map Hompg(FSR, R) — R is surjective, proving that R
is strongly F-regular. O

Generally speaking, using the same method as above, one can show that Anng 0%, = 7(R),
see for example [LSOI]. In fact, any non-zero element of 7(R) can be used to “test” tight
closure in any module. Furthermore, 7(R) is generated by exactly the elements ¢ € R such
that ¢N;, C N for all modules N C M, see [Hoc07].

Conjecture 2.7. The (big/non-finitistic) test ideal T(R) is equal to the finitistic test ideal
7y (R).

IThe 1-dimensional submodule of E which is annihilated by m.
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