
F -SINGULARITIES AND FROBENIUS SPLITTING NOTES
11/11-2010

KARL SCHWEDE

1. Vanishing theorems via finite maps and direct summand conditions

Using the methods discussed previously, one can show the following.

Proposition 1.1. [HH92] [Also see [Smi97] and erratum on Smith’s webpage] Suppose that
X is a projective variety of characteristic p > 0 and that L is an ample line bundle. Then
there exists a finite map f : Y → X such that H i(X,L −j) → H i(Y, f ∗L −j) is zero for all
0 < i < dimX and all j.

The only interesting part of this statement is the case when j = 0 (just take f to be a
high power of the Frobenius), and the idea of the proof is the same as the equational lemma.
Recently Bhargav Bhatt, see

http://www-personal.umich.edu/˜bhattb/math/ddscposchar.pdf

has shown that we can extend this result in the following way

Theorem 1.2 (Bhatt). [http://www-personal.umich.edu/˜bhattb/math/ddscposchar.pdf ] Sup-
pose that X is a projective variety of characteristic p > 0 and L is a semi-ample line bundle.
Then there exists a finite map f : Y → X such that

• H i(X,L )→ H i(Y, f ∗L ) is zero for i > 0.
• If in addition, L is big, then we can force H i(X,L −1)→ H i(Y, f ∗L ) to be zero for
i < dimX.

I’ll leave you to find the proofs on the web.
Bhatt was actually interested in the following. Consider the following condition on a ring

R.

Definition 1.3. Suppose that R is F -finite normal domain. We say that R is a splinter (or
DSCR = direct summand condition ring ) if R ⊆ S splits as a map of R-modules for every
finite extension R ⊆ S. Furthermore, we say that R is a DDSCR (= derived direct summand
condition ring) if R ⊆ Rf∗OY splits as a map of objects in Db

coh(R) for every generically
finite proper map f : Y → SpecR.

Bhatt’s main result follows:

Theorem 1.4 (Bhatt). A ring in characteristic p > 0 is a DSCR (= splinter) if and only
if it is a DDSCR.

Again, I’ll refer you to his paper for the reference.
The following is the most important conjecture in tight closure theory (or a variant of it).

Conjecture 1.5. A ring R satisfies the DSCR if and only if it is strongly F -regular.
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This conjecture is known in the Q-Gorenstein case, see [Sin99], [HH94].
The implication that strongly F -regular implies DSCR is easy, we prove it below.

Lemma 1.6. Suppose that R is strongly F -regular, then R is a splinter/DSCR.

Proof. Given a finite extension R ⊆ S, fix φ : F e
∗R → R. This map induces a map

HomR(S, F e
∗R)→ HomR(S,R). We also have

F e
∗ HomR(S,R) = HomF e

∗R(F e
∗S, F

e
∗R)→ HomR(F e

∗S, F
e
∗R)→ HomR(S, F e

∗R)

giving us a map F e
∗ HomR(S,R)→ HomR(S,R). One can check that this induces a commu-

tative diagram.

F e
∗ HomR(S,R) //

��

HomR(S,R)

��

F e
∗R φ

// R

where the vertical maps are evaluation-at-1. In particular, the image of HomR(S,R)→ R is
φ-stable, and so if R is strongly F -regular, that map is surjective. �

In mixed characteristic, one can ask a related question.

Conjecture 1.7 (Hochster). Suppose that R is a regular (local) ring in mixed characteris-
tic. Is it true that for every finite extension R ⊆ S, one has that the evaluation-at-1 map
HomR(S,R)→ R surjects (in other words, R ⊆ S splits).

This is probably the most important conjecture in commutative algebra. This conjecture
is known up through dimension 3 and is closely related to a pantheon of other conjectures
known as the homological conjectures. It is obvious in dimension 1 (1-dimensional regular
local rings being PIDs). Let me prove it in dimension 2.

Proposition 1.8. Suppose that R is a regular local ring and that R ⊆ S is a finite extension.
Then R ⊆ S splits as a map of R-modules.

Proof. It is sufficient to prove the result in the case that S is normal and reduced and so
we assume that. Choose f ∈ R such that R/f is regular (and 1-dimensional). Consider the
following diagram (we do Elkik’s proof yet again).

ωS = HomR(S,R) //

×f
��

R = ωR

×f
��

ωS = HomR(S,R) //

��

R = ωR

��

ωS/f //

��

R/f = ωR/f

��

0 0

where the bottom zeros exist because the rings in question are Cohen-Macaulay.
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Now, R/f → S/f is a finite extension (S/f may not be reduced, but this doesn’t matter),
and so it splits because R/f is regular. Thus ωS/f → ωR/f surjects. In particular, our
diagram becomes.

ωS = HomR(S,R) //

×f
��

R = ωR

×f
��

// C

×f
��

// 0

ωS = HomR(S,R) //

��

R = ωR

��

// C //

��

0

ωS/f //

��

R/f = ωR/f

��

// 0

0 0

Nakayama’s lemma again implies that C is zero. �

Remark 1.9. In fact, one can show that for a regular ring in mixed characteristic for any
generically finite map f∗Y → SpecR, f∗ωY → ωR surjects.

2. Tight closure

Suppose that R ⊆ S is an extension of rings. Consider an ideal I ⊆ R and its extension
IS. We always have that (IS) ∩R ⊇ I, however:

Lemma 2.1. With R ⊆ S as above and further suppose the extension splits as a map of
R-modules. Then

(IS) ∩R = I.

Proof. Fix φ : S → R to be the splitting given by hypothesis. Suppose that z ∈ (IS) ∩ R,
in other words, z ∈ IS and z ∈ R. Write I = (x1, . . . , xn), we know that there exists si ∈ S
such that z =

∑
sixi. Now, z = φ(z) = φ (

∑
sixi) =

∑
xiφ(si) ∈ I as desired. �

A converse result holds too.

Theorem 2.2. [Hoc77] Suppose that R ⊆ S is a finite extension of approximately Goren-
stein1 rings. If for every ideal I ⊆ R, we have IS ∩ R = S, then R ⊆ S splits as a map of
R-modules.

Proof. See, [Hoc77] �

Consider now what happens if the extension R ⊆ S is the Frobenius map.

Definition 2.3. Given an ideal I ⊆ R, the Frobenius closure of I (denoted IF ) is the set of
all elements z ∈ R such that zp

e ∈ I [pe] for some e > 0. Equivalently, it is equal to the set of
all elements z ∈ R such that z ∈ (IR1/pe

) for some ideal I.

Remark 2.4. The set IF is an ideal. Explicitly, if z1, z2 ∈ IF , then zp
a

1 ∈ I [pa] and zp
b

2 ∈ I [pb].
Notice that we may assume that a = b. Thus z1 + z2 ∈ IF . On the other hand, clearly
hz1 ∈ IF for any h ∈ R.

1Nearly all rings in geometry satisfy this condition. Explicitly, a local ring (R,m) is called approximately
Gorenstein if for every integer N > 0, there exists I ⊆ mN such that R/I is Gorenstein.
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We’ll point out a couple basic facts about IF .

Proposition 2.5. Fix R to be a domain and (x1, . . . , xn) = I ⊆ R an ideal.

(i) (IF )F = IF .
(ii) For any multiplicative set W , (W−1I)F = W−1(IF ).

(iii) R is F -pure/split if and only if I = IF for all ideals I ⊆ R.

Proof. For (i), suppose that z ∈ (IF )F . Thus there exists an e > 0 such that zp
e ∈ (IF )[pe].

In particular, we can write zp
e

=
∑
aix

pe

i for some ai ∈ R and xi ∈ IF . Thus for each

xi, there exists an ei > 0 such that xp
ei

i ∈ I [pei ]. Choosing e′ ≥ ei for all i, we have that

xp
e′

i ∈ I [pe′ ]. Therefore, (zp
e
)p

e′
= zp

e+e′
=

∑
ap

e′

i xp
e+e′

i ∈ I [pe+e′ ] as desired.
For (ii), we note that (⊇) is obvious. Conversely, suppose that z ∈ (W−1I)F , thus zp

e ∈
(W−1I)[pe] = W−1(I [pe]). Therefore, for some w ∈ W , wzp

e ∈ I [pe], which implies that
(wz)p

e ∈ I [pe] and the converse inclusion holds.
Part (iii) is obvious by Theorem 2.2. �

It is natural to hope that these ideas can be extended to (strong) F -regularity.
Recall that R is strongly F -regular (a domain) if for each 0 6= c ∈ R, there exists a map

φ : F e
∗R→ R that sends c 7→ 1 for some e > 0.

Definition 2.6. [HH90] Suppose that R is an F -finite domain and I is an ideal of R, then
the tight closure of I (denoted I∗) is defined to be the set

{z ∈ R|∃0 6= c ∈ R such that czp
e ∈ I [pe] for all e ≥ 0}.

Proposition 2.7. Suppose we have an ideal (x1, . . . , xn) = I ⊆ R where R is an F -finite
domain.

(i) I∗ is an ideal containing I.
(ii) (I∗)∗ = I∗.

(iii) It is known that the formation of I∗ does NOT commute with localization.
(iv) If R is strongly F -regular, then I∗ = I for all ideals I.

Proof. For (i), suppose that czp
e ∈ I [pe] and dyp

e ∈ I [pe] for all e ≥ 0 for certain c, d ∈ R\{0}.
Then cd(z + y)p

e ∈ I [pe] for all e ≥ 0. Of course, clearly I∗ contains I (choose c = 1).
For (iv), suppose that z ∈ I∗ and R is strongly F -regular. Choose c 6= 0 such that

czp
e ∈ I [pe] for all e ≥ 0. We know that there exists an e > 0 and φ : F e

∗R→ R which sends

c to 1. Write czp
e

=
∑
aix

pe

i . Then z = φ(czp
e
) =

∑
xiφ(ai) ∈ I. �

Conjecture 2.8 (Weak⇒Strong). If I∗ = I for all ideals I ⊆ R, then R is strongly F -
regular.

Remark 2.9. This conjecture is known for Q-Gorenstein rings (or even local rings which are
Q-Gorenstein on the punctured spectrum), for graded rings, and also for rings of finite type
over an uncountable field.
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