F-SINGULARITIES AND FROBENIUS SPLITTING NOTES 11/11-2010

KARL SCHWEDE

1. Vanishing theorems via finite maps and direct summand conditions

Using the methods discussed previously, one can show the following.

Proposition 1.1. [HH92] [Also see [Smi97] and erratum on Smith's webpage] Suppose that X is a projective variety of characteristic p > 0 and that \mathcal{L} is an ample line bundle. Then there exists a finite map $f: Y \to X$ such that $H^i(X, \mathcal{L}^{-j}) \to H^i(Y, f^*\mathcal{L}^{-j})$ is zero for all $0 < i < \dim X$ and all j.

The only interesting part of this statement is the case when j=0 (just take f to be a high power of the Frobenius), and the idea of the proof is the same as the equational lemma. Recently Bhargav Bhatt, see

http://www-personal.umich.edu/~bhattb/math/ddscposchar.pdf has shown that we can extend this result in the following way

Theorem 1.2 (Bhatt). [http://www-personal.umich.edu/~bhattb/math/ddscposchar.pdf] Suppose that X is a projective variety of characteristic p > 0 and \mathcal{L} is a semi-ample line bundle. Then there exists a finite map $f: Y \to X$ such that

- $H^i(X, \mathcal{L}) \to H^i(Y, f^*\mathcal{L})$ is zero for i > 0.
- If in addition, \mathscr{L} is big, then we can force $H^i(X, \mathscr{L}^{-1}) \to H^i(Y, f^*\mathscr{L})$ to be zero for $i < \dim X$.

I'll leave you to find the proofs on the web.

Bhatt was actually interested in the following. Consider the following condition on a ring R.

Definition 1.3. Suppose that R is F-finite normal domain. We say that R is a splinter (or DSCR = direct summand condition ring) if $R \subseteq S$ splits as a map of R-modules for every finite extension $R \subseteq S$. Furthermore, we say that R is a DDSCR (= derived direct summand condition ring) if $R \subseteq Rf_*\mathcal{O}_Y$ splits as a map of objects in $D^b_{coh}(R)$ for every generically finite proper map $f: Y \to \operatorname{Spec} R$.

Bhatt's main result follows:

Theorem 1.4 (Bhatt). A ring in characteristic p > 0 is a DSCR (= splinter) if and only if it is a DDSCR.

Again, I'll refer you to his paper for the reference.

The following is the most important conjecture in tight closure theory (or a variant of it).

Conjecture 1.5. A ring R satisfies the DSCR if and only if it is strongly F-regular.

This conjecture is known in the \mathbb{Q} -Gorenstein case, see [Sin99], [HH94]. The implication that strongly F-regular implies DSCR is easy, we prove it below.

Lemma 1.6. Suppose that R is strongly F-regular, then R is a splinter/DSCR.

Proof. Given a finite extension $R \subseteq S$, fix $\phi : F_*^e R \to R$. This map induces a map $\operatorname{Hom}_R(S, F_*^e R) \to \operatorname{Hom}_R(S, R)$. We also have

$$F_*^e \operatorname{Hom}_R(S, R) = \operatorname{Hom}_{F_*^e R}(F_*^e S, F_*^e R) \to \operatorname{Hom}_R(F_*^e S, F_*^e R) \to \operatorname{Hom}_R(S, F_*^e R)$$

giving us a map $F_*^e \operatorname{Hom}_R(S,R) \to \operatorname{Hom}_R(S,R)$. One can check that this induces a commutative diagram.

$$F_*^e \operatorname{Hom}_R(S,R) \longrightarrow \operatorname{Hom}_R(S,R)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$F_*^e R \xrightarrow{\phi} R$$

where the vertical maps are evaluation-at-1. In particular, the image of $\operatorname{Hom}_R(S,R) \to R$ is ϕ -stable, and so if R is strongly F-regular, that map is surjective.

In mixed characteristic, one can ask a related question.

Conjecture 1.7 (Hochster). Suppose that R is a regular (local) ring in mixed characteristic. Is it true that for every finite extension $R \subseteq S$, one has that the evaluation-at-1 map $\operatorname{Hom}_R(S,R) \to R$ surjects (in other words, $R \subseteq S$ splits).

This is probably the most important conjecture in commutative algebra. This conjecture is known up through dimension 3 and is closely related to a pantheon of other conjectures known as the homological conjectures. It is obvious in dimension 1 (1-dimensional regular local rings being PIDs). Let me prove it in dimension 2.

Proposition 1.8. Suppose that R is a regular local ring and that $R \subseteq S$ is a finite extension. Then $R \subseteq S$ splits as a map of R-modules.

Proof. It is sufficient to prove the result in the case that S is normal and reduced and so we assume that. Choose $f \in R$ such that R/f is regular (and 1-dimensional). Consider the following diagram (we do Elkik's proof yet again).

$$\omega_{S} = \operatorname{Hom}_{R}(S, R) \longrightarrow R = \omega_{R}$$

$$\downarrow^{\times f} \qquad \stackrel{\times f}{\downarrow}$$

$$\omega_{S} = \operatorname{Hom}_{R}(S, R) \longrightarrow R = \omega_{R}$$

$$\downarrow^{\downarrow} \qquad \qquad \downarrow^{\downarrow}$$

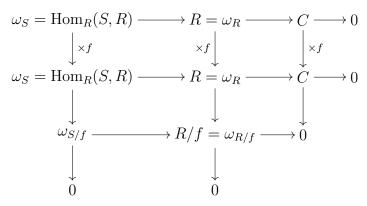
$$\omega_{S/f} \longrightarrow R/f = \omega_{R/f}$$

$$\downarrow^{\downarrow} \qquad \qquad \downarrow^{\downarrow}$$

$$0 \qquad \qquad 0$$

where the bottom zeros exist because the rings in question are Cohen-Macaulay.

Now, $R/f \to S/f$ is a finite extension (S/f) may not be reduced, but this doesn't matter), and so it splits because R/f is regular. Thus $\omega_{S/f} \to \omega_{R/f}$ surjects. In particular, our diagram becomes.



Nakayama's lemma again implies that C is zero.

Remark 1.9. In fact, one can show that for a regular ring in mixed characteristic for any generically finite map $f_*Y \to \operatorname{Spec} R$, $f_*\omega_Y \to \omega_R$ surjects.

2. Tight closure

Suppose that $R \subseteq S$ is an extension of rings. Consider an ideal $I \subseteq R$ and its extension IS. We always have that $(IS) \cap R \supset I$, however:

Lemma 2.1. With $R \subseteq S$ as above and further suppose the extension splits as a map of R-modules. Then

$$(IS) \cap R = I.$$

Proof. Fix $\phi: S \to R$ to be the splitting given by hypothesis. Suppose that $z \in (IS) \cap R$, in other words, $z \in IS$ and $z \in R$. Write $I = (x_1, \dots, x_n)$, we know that there exists $s_i \in S$ such that $z = \sum s_i x_i$. Now, $z = \phi(z) = \phi(\sum s_i x_i) = \sum x_i \phi(s_i) \in I$ as desired.

A converse result holds too.

Theorem 2.2. [Hoc77] Suppose that $R \subseteq S$ is a finite extension of approximately Gorenstein¹ rings. If for every ideal $I \subseteq R$, we have $IS \cap R = S$, then $R \subseteq S$ splits as a map of R-modules.

Proof. See,
$$[Hoc77]$$

Consider now what happens if the extension $R \subseteq S$ is the Frobenius map.

Definition 2.3. Given an ideal $I \subseteq R$, the Frobenius closure of I (denoted I^F) is the set of all elements $z \in R$ such that $z^{p^e} \in I^{[p^e]}$ for some e > 0. Equivalently, it is equal to the set of all elements $z \in R$ such that $z \in (IR^{1/p^e})$ for some ideal I.

Remark 2.4. The set I^F is an ideal. Explicitly, if $z_1, z_2 \in I^F$, then $z_1^{p^a} \in I^{[p^a]}$ and $z_2^{p^b} \in I^{[p^b]}$. Notice that we may assume that a = b. Thus $z_1 + z_2 \in I^F$. On the other hand, clearly $hz_1 \in I^F$ for any $h \in R$.

¹Nearly all rings in geometry satisfy this condition. Explicitly, a local ring (R, \mathfrak{m}) is called approximately Gorenstein if for every integer N > 0, there exists $I \subseteq \mathfrak{m}^N$ such that R/I is Gorenstein.

We'll point out a couple basic facts about I^F .

Proposition 2.5. Fix R to be a domain and $(x_1, \ldots, x_n) = I \subseteq R$ an ideal.

- (i) $(I^F)^F = I^F$.
- (ii) For any multiplicative set W, $(W^{-1}I)^F = W^{-1}(I^F)$.
- (iii) R is F-pure/split if and only if $I = I^F$ for all ideals $I \subseteq R$.

Proof. For (i), suppose that $z \in (I^F)^F$. Thus there exists an e > 0 such that $z^{p^e} \in (I^F)^{[p^e]}$. In particular, we can write $z^{p^e} = \sum a_i x_i^{p^e}$ for some $a_i \in R$ and $x_i \in I^F$. Thus for each x_i , there exists an $e_i > 0$ such that $x_i^{p^{e^i}} \in I^{[p^{e_i}]}$. Choosing $e' \geq e_i$ for all i, we have that $x_i^{p^{e^i}} \in I^{[p^{e^i}]}$. Therefore, $(z^{p^e})^{p^{e^i}} = z^{p^{e+e^i}} = \sum a_i^{p^{e^i}} x_i^{p^{e+e^i}} \in I^{[p^{e+e^i}]}$ as desired.

For (ii), we note that (\supseteq) is obvious. Conversely, suppose that $z \in (W^{-1}I)^F$, thus $z^{p^e} \in (W^{-1}I)^{[p^e]}$.

For (ii), we note that (\supseteq) is obvious. Conversely, suppose that $z \in (W^{-1}I)^F$, thus $z^{p^e} \in (W^{-1}I)^{[p^e]} = W^{-1}(I^{[p^e]})$. Therefore, for some $w \in W$, $wz^{p^e} \in I^{[p^e]}$, which implies that $(wz)^{p^e} \in I^{[p^e]}$ and the converse inclusion holds.

It is natural to hope that these ideas can be extended to (strong) F-regularity.

Recall that R is strongly F-regular (a domain) if for each $0 \neq c \in R$, there exists a map $\phi: F_*^e R \to R$ that sends $c \mapsto 1$ for some e > 0.

Definition 2.6. [HH90] Suppose that R is an F-finite domain and I is an ideal of R, then the *tight closure of* I (denoted I^*) is defined to be the set

$$\{z \in R | \exists 0 \neq c \in R \text{ such that } cz^{p^e} \in I^{[p^e]} \text{ for all } e \geq 0\}.$$

Proposition 2.7. Suppose we have an ideal $(x_1, \ldots, x_n) = I \subseteq R$ where R is an F-finite domain.

- (i) I^* is an ideal containing I.
- (ii) $(I^*)^* = I^*$.
- (iii) It is known that the formation of I^* does NOT commute with localization.
- (iv) If R is strongly F-regular, then $I^* = I$ for all ideals I.

Proof. For (i), suppose that $cz^{p^e} \in I^{[p^e]}$ and $dy^{p^e} \in I^{[p^e]}$ for all $e \ge 0$ for certain $c, d \in R \setminus \{0\}$. Then $cd(z+y)^{p^e} \in I^{[p^e]}$ for all $e \ge 0$. Of course, clearly I^* contains I (choose c=1).

For (iv), suppose that $z \in I^*$ and R is strongly F-regular. Choose $c \neq 0$ such that $cz^{p^e} \in I^{[p^e]}$ for all $e \geq 0$. We know that there exists an e > 0 and $\phi : F_*^e R \to R$ which sends c to 1. Write $cz^{p^e} = \sum a_i x_i^{p^e}$. Then $z = \phi(cz^{p^e}) = \sum x_i \phi(a_i) \in I$.

Conjecture 2.8 (Weak \Rightarrow Strong). If $I^* = I$ for all ideals $I \subseteq R$, then R is strongly F-regular.

Remark 2.9. This conjecture is known for Q-Gorenstein rings (or even local rings which are Q-Gorenstein on the punctured spectrum), for graded rings, and also for rings of finite type over an uncountable field.

References

[Hoc77] M. Hochster: Cyclic purity versus purity in excellent Noetherian rings, Trans. Amer. Math. Soc. 231 (1977), no. 2, 463–488. MR0463152 (57 #3111)

- [HH90] M. HOCHSTER AND C. HUNEKE: Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), no. 1, 31–116. MR1017784 (91g:13010)
- [HH92] M. HOCHSTER AND C. HUNEKE: Infinite integral extensions and big Cohen-Macaulay algebras, Ann. of Math. (2) 135 (1992), no. 1, 53–89. 1147957 (92m:13023)
- [HH94] M. HOCHSTER AND C. HUNEKE: Tight closure of parameter ideals and splitting in module-finite extensions, J. Algebraic Geom. 3 (1994), no. 4, 599–670. MR1297848 (95k:13002)
- [Sin99] A. K. Singh: **Q**-Gorenstein splinter rings of characteristic p are F-regular, Math. Proc. Cambridge Philos. Soc. **127** (1999), no. 2, 201–205. MR1735920 (2000j:13006)
- [Smi97] K. E. SMITH: Vanishing, singularities and effective bounds via prime characteristic local algebra, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 289–325. MR1492526 (99a:14026)