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1. Pairs in positive characteristic

We’ve already studied pairs in a certain context. Consider pairs of the form (R, φ) where
φ : F e

∗R→ R is an R-linear map. Our first goal will be to see that (R, φ) is very like a pair
(X,∆) where KX + ∆ is Q-Cartier.

Proposition 1.1. Suppose that X is a normal F -finite algebraic variety. Then there is a
surjective map from non-zero elements φ ∈ HomOX

(F e
∗OX ,OX) to Q-divisors ∆ such that

(pe− 1)(KX + ∆) ∼ 0. Furthermore, two elements φ1, φ2 induce the same divisor if and only
if there is a unit u ∈ H0(X,F e

∗OX) such that φ1(u · ) = φ2( ).
More generally, there is a bijection of sets between effective Q-divisors ∆ such that KX+∆

is Q-Cartier with index1 not divisible by p > 0 and certain equivalence relations on pairs
(L , φ : F e

∗L → OX) where L is a line bundle.
The equivalence relation described above is generated by equivalences of the following two

forms.

• Consider two pairs (L1, φ1 : F e1L1 → OX) and (L2, φ2 : F e2L2 → OX) where
e1 = e2 = e. Then we declare these pairs equivalent if there is an isomorphism of
line bundles ψ : L1 → L2 and a commutative diagram:

F e
∗L1

F e
∗ψ

//

φ1 ##FFFFFFFF
Fe∗L2

φ2{{xxxxxxxx

OX
• Given a pair (L , φ : F e

∗L → OX), we also declare it to be equivalent to the pair

(L p(n−1)e+···+1, φn : F ne : L p(n−1)e+···+1 → · · · → L → OX).

First we do an example.

Example 1.2. Suppose R is a local ring and X = SpecR. Further suppose that R is Goren-
stein (or even such that (pe − 1)KX is Cartier), then HomR(F e

∗R,R) ∼= F e
∗R as we’ve seen.

The generating map ΦR ∈ HomR(F e
∗R,R) corresponds to the zero divisor by the description

above. Generally speaking, if ψ( ) = ΦR(x · )for x ∈ F e
∗R, then ∆ψ = 1

pe−1
divX(x). Even

without the Gorenstein hypothesis, viewing HomR(F e
∗R(d(pe−1)∆φe), R) ⊆ HomR(F e

∗R,R),
we have that φ generates HomR(F e

∗R(d(pe − 1)∆φe), R) as an F e
∗R-module.

Explicitly, consider R = k[x]. We know ΦR : F e
∗R → R is the map that sends xp

e−1 to 1
and the other relevant monomials to zero. Given a general element ψ : F e

∗R→ R defined by

1The index of a Q-Cartier divisor D is the smallest positive integer n such that n(KX + ∆) is Cartier.
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the rule

xp
e−1 � // a0

xp
e−2 � // a1

. . . � // . . .

x1 � // ape−2

1
� // ape−1

Then ψ( ) = ΦR

(
(ap

e

0 + ap
e

1 x+ · · ·+ ape−2x
pe−2 + ape−1x

pe−1) ·
)

and so divψ = 1
pe−1

div(ap
e

0 +

ap
e

1 x+ · · ·+ape−2x
pe−2 +ape−1x

pe−1). One can do similarly easy computations for polynomial
rings in general.

Now we give a proof of the proposition.

Proof. For the first equivalence, given φ ∈ HomOX
(F e
∗OX ,OX) ∼= H0(X,F e

∗OX((1−pe)KX))
define a divisor Dφ to be the effective divisor determined by φ linearly equivalent to (1 −
pe)KX . Set ∆φ = 1

pe−1
Dφ. It is easy to see that (pe − 1)(KX + ∆φ) ∼ 0.

Now, if φ1 and φ2 induce the same divisor, then Dφ1 = Dφ2 which means that φ1 and φ2

are unit multiples of each other (as sections of H0(X,F e
∗OX((1 − pe)KX))) and the result

follows.
For the more general statement, given φ : HomOX

(F e
∗L ,OX) ∼= H0(X,F e

∗L
−1((1 −

pe)KX)), we can associate a divisor Dφ such that OX(Dφ) ∼= L −1((1 − pe)KX) and de-
fine ∆φ = 1

pe−1
Dφ. That the first equivalence relation holds is the same as in the case that

L = OX above. The fact that the second equivalence relation holds, is an easy consequence
of the following lemma. After the proof of this lemma, it is an easy exercise to verify that
these two equivalence relations are all that is needed. �

Before doing this lemma, let us do an example.

Lemma 1.3. Suppose that L1 and L2 are line bundles and φ1 : F e1L1 → OX and φ2 :
F e2L2 → OX are OX-linear maps. We can then define a composition of these maps as
follows: Consider ψ := φ2 ◦ (F e2

∗ (L2 ⊗ φ1)) : F e1+e2L1 ⊗L pe1

2 → L2. Then

∆ψ =
pe1 − 1

pe1+e2 − 1
∆φ1 +

pe1(pe2 − 1)

pe1+e2 − 1
∆φ2

Notice that pe1−1
pe1+e2−1

+ pe1 (pe2−1)
pe1+e2−1

= 1.

Proof. The statement is local, so we may assume that L1
∼= L2

∼= OX . In fact, we may
assume that X is the prime spectrum of a DVR R with parameter r. Fix ΨR : F∗R→ R to
be the generating map of HomR(F∗R,R) as an F∗R-module.

In this case, φ1( ) = Ψe1
R (x1 · ) and φ2( ) = Ψe2

R (x2 · ) where xi ∈ F ei
∗ R and so

∆φi = 1
pei−1

divX(xi). Then

φ2(F e2
∗ φ1( )) = Ψe2

R (F e2
∗ x2Ψe1

R (F e1
∗ x1 )) = Ψe1+e2

(
F e1+e2
∗ x1x

pe1

2

)
The divisor of this composition is evidently

1

pe1+e2 − 1
(div(x1)+pe1 div(x2)) =

1

pe1+e2 − 1
(div(x1)+pe1 div(x2)) =

pe1 − 1

pe1+e2 − 1
∆φ1+

pe1(pe2 − 1)

pe1+e2 − 1
∆φ2
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Lemma 1.4. An element φ ∈ HomR(F e
∗R,R) is contained inside the submodule

(1) HomR(F e
∗R(d(pe − 1)∆e), R) ⊆ HomR(F e

∗R,R)

if and only if Dφ ≥ (pe − 1)∆.

Proof. Because all the module are reflexive the statement can be reduced to the case when
R is a discrete valuation ring and ∆ = s div(x) where x is the parameter for the DVR R and
s ≥ 0 is a real number. In this case, the inclusion from equation 1 can be identified with
the multiplication map R → R which sends 1 to xds(p

e−1)e. Thus, φ ∈ HomR(F e
∗R,R) ∼= R

is contained inside HomR(F e
∗R(d(pe − 1)∆e), R) ∼= xds(p

e−1)eR if and only if Dφ ≥ ds(pe −
1)e div(x) = d(pe−1)∆e. However, since Dφ is integral, it is harmless to remove the round-up
d·e. �

Remark 1.5. One can work with non-effective divisors similarly. One then can consider maps
φ : F e

∗L → K(X) where K(X) is the fraction field of X.

Definition 1.6. [HH89], [HW02], [Tak04], [Sch08] Suppose that (X,∆, at) is a triple where
X is an F -finite normal scheme, ∆ is an effective Q-divisor, a is an ideal sheaf and t ≥ 0
is a real number. Further suppose that X is the spectrum of a local ring R. We say that
(X,∆, at) is:

(a) sharply F -pure if there exists some e > 0 and some φ ∈ HomR(F e
∗R(d(pe− 1)∆e), R)

such that 1 ∈ φ(F e
∗ a
dt(pe−1)e).

(b) strongly F -regular if for every c ∈ R \ 0, there exists a e > 0 and some φ ∈
HomR(F e

∗R(d(pe − 1)∆e), R) such that 1 ∈ φ(F e
∗ ca

dt(pe−1)e).

If X is not the spectrum of a local ring, then we generalize these definitions by requiring
them at every point. They are open conditions.

Suppose that X is quasi-projective. The (big) test ideal of (X,∆, at), denoted τb(X,∆, a
t)

is defined to be the unique smallest non-zero ideal of J ⊆ R such that φ(F e
∗ a
dt(pe−1)eJL ) ⊆ J

for every φ : F e
∗L → OX such that ∆φ ≥ ∆. This always exists and its formation commutes

with localization.

Definition 1.7. We say that R is strongly F -regular / F -pure if the same statement holds
for ∆ = 0 and a = R.

Remark 1.8. If ∆ = ∆ψ for some ψ : F e
∗L → OX , then in the definition of the big test ideal

/ sharp F -purity / strong F -regularity, one only needs to check the condition for φ = ψn.

Proposition 1.9. A ring is strongly F -regular if and only if τb(R) = R. Furthermore a
strongly F -regular ring is always F -rational (in particular, it is Cohen-Macaulay) and a
Gorenstein F -rational ring is strongly F -regular.

Proof. Suppose R is strongly F -regular and local and suppose that J satisfies φ(F e
∗J) ⊆ J

for every φ : F e
∗R → R. The strong F -regularity hypothesis implies immediately that J

contains R and is thus equal to 1. Conversely, suppose that τb(R) 6= R, then choose any
element 0 6= c ∈ τb(R). It follows that for every φ ∈ HomR(F e

∗R,R), φ(F e
∗ cR) ⊆ τb(R) which

does not contain 1.
We’ve already seen that F -rational Gorenstein rings are strongly F -regular. This is simply

because R = ωR and in this case we have a map ΨR : F e
∗ (ωR = R) → (ωR = R) such that
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τ(R,ΨR) = R (interestingly, we don’t need the Cohen-Macaulay condition here, it is implied
for free by what follows).

Now assume that R is strongly F -regular, we will show it is F -rational and in particular
Cohen-Macaulay (this is one proof where I think it is easier to use the tight closure defini-
tions). First note that R is necessarily normal since we know the conductor is φ-compatible
for all φ ∈ HomR(F e

∗R,R), so in particular τb(R) is always contained in the conductor. We
now show that R is Cohen-Macaulay by showing that hi(ω

q
R) = 0 for all i > − dimR. Sup-

pose not, so choose 0 6= c ∈ R such that chi(ω
q
R) = 0 but hi(ω

q
R) 6= 0 (such modules always

have support strictly smaller in dimension than the ring so this is possible). Dual to the
map R→ F e

∗R which sends 1 7→ c, we have the map

hi(F e
∗ω

q
R)

F e
∗×c

// hi(F e
∗ω

q
R) // hi(ω

q
R)

For e large enough, this map is necessarily surjective (since our map R → F e
∗R splits), but

this is ridiculous since it is also zero.
Using the same argument, we also have that the composition F e

∗ cωR ⊆ F e
∗ωR → ωR surjects

for all e� 0. But this clearly implies that τ(ωR) = ωR which completes the proof. �

Remark 1.10. We have the following implications:

strongly F -regular

��

+3 F -rational

��
F -pure +3 F -injective

Furthermore, under the (quasi)-Gorenstein hypothesis the horizontal arrows can be reversed.

Proposition 1.11. The ideal τb(X,∆, a
t) exists.

Proof. I’ll only prove this for X = SpecR. Choose a non-zero ψ ∈ M e
∆,at = (F e

∗ a
dt(pe−1)e) ·

HomR(F e
∗R(d(pe− 1)∆e), R). We view ψ as a map from F e

∗R to R. Choose c a test element
for the pair (R,ψ). Then we claim that

τb(R,∆, a
t) =

∑
e≥0

∑
φ∈Me

∆,at

φ(F e
∗ cR).

It is enough to show equality after localizing at each prime ideal, and so we may assume R
is local. The sum is is stabilized by all φ ∈M e

∆,at . There is a computation here to check this,

that the elements of M e
∆,at form an algebra of maps, but it is of the form pdd(pe − 1)te +

d(pd − 1)te ≥ dpe+d − 1e. On the other hand, clearly any J ⊆ R that is stabilized by all
φ ∈M e

∆,at contains c since all powers of ψ live in M e
∆,at for various e. �

2. F -singularities and birational maps

Our goal in this section is to relate F -singularities and test ideals with log canonical and
log terminal singularities as well as multiplier ideals. In order to do this, we need to explain
how maps φ : F e

∗R→ R behave under birational maps.

Proposition 2.1. Suppose that π : X̃ → X is a proper birational map and φ ∈ HomR(F e
∗R,R).

Write
KX̃ −

∑
aiEi = f ∗(KR + ∆φ)
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Then φ induces a map φ̃ : F e
∗OX̃((1− pe)

∑
aiEi)→ OX̃ which agrees with φ where π is an

isomorphism. Finally, it induces a map (which we also call φ̃)

φ̃ : F e
∗OX̃(d

∑
aiEie)→ OX̃(d

∑
aiEie).
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