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KARL SCHWEDE

1. F-SINGULARITIES AND BIRATIONAL MAPS

Our goal in this section is to relate F-singularities and test ideals with log canonical and
log terminal singularities as well as multiplier ideals. In order to do this, we need to explain
how maps ¢ : FfR — R behave under birational maps.

Proposition 1.1. Suppose that 7 : X — Xisa proper birational map and ¢ € Homg(FSR, R).
Write
K=Y abi= ["(Kn+Ay)

Then ¢ induces a map 5: FeOz((1—p°) > a,E;) — O which agrees with ¢ where m is an
isomorphism. Finally, it induces a map (which we also call ¢)

¢ FLOg([Y_aiE]) = Ox([Y | aiFil).

Proof. Throughout, we remove the singular locus of X if necessary so that it is regular, and
work with divisors on this locus. This is harmless though since we are looking at maps
between reflexive modules.

By assumption ¢ generates Hompg(FER([(p® — 1)Ay]), R) = FER((1 — p°)(Kr + Ay)) =
F¢R. Thus we have a section d € f*R((1 — p°)(Kgr + Ay)) = Ox corresponding to ¢, and
furthermore this section generates. So that we obtain a section d € I'(X, Oz (1 —p°) (K5 —
Y- a;F;)) which generates as an Og-module. However, FfO3((1 — p°)(K5x — > a,E;)) =
Homo, (FfO5((1—p°) (> a;E;)), Of) and we obtain our first statement easily.

For the second statement, consider ¢ : FfOgx((1 — p°) > a;F;) — Og. Twisting by
O%([>° a;E;]) gives us a map

¢ FrOx((1—p) > B +p [y aE]) — O0x(> k)
HOWGVGI‘, (1 — pe) Z CLZ'EZ' + pe [Z GZEJ Z [(1 — pe) Z a,»Ei + pe Z CLZEZ—‘ = [Z CLZEZ—‘ which
gives the desired map via composition with the inclusion. O

Remark 1.2. Restrict the above map 5 to an F; such that a; < 0. Localizing at the generic
point of that E; gives us a “generating” map from Oz p ((1 —p®)a;E;) — Ox .. In other
words, if we pay close attention to our embedding into the fraction field, the divisor associated
to 5 corresponds to » | —a;E; (at least for those E; with non-positive a;). As we’ve previously
alluded to, one can work with anti-effective divisors too, in that case 5 corresponds to

Remark 1.3. In fact, for any effective divisor E on X, .05 (][> a;E;] + E) is also stabilized

by ¢.
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Remark 1.4. This immediately implies the inclusion 7,(R,As) € J(R,Ay) assuming the
existence of resolutions of singularities in characteristic p > 0. In fact, a slight modification
of this implies that (R, A, a") C J(R,A,a’) under the assumption that Ky + A is Q-
Gorenstein. To see this, assume that R is local notice that for every ¢ € MJ ., we have that
Ay =Ayp+ zﬁ div(f) where Ay > A and f € alt®?*=DI. Tt easily follows from the method
of the proof and Remark [I.3[above that 7.0 ([K5 — 7*(Kx + A) — tG1) is ¢-stable.

We’d now like to relate F-pure and log canonical singularities.

Theorem 1.5. [HW02] Suppose that (X, A, a*) has F'-pure singularities and that Kx + A is
Q-Gorenstein. Further suppose that 7 X > X isa proper birational map with X normal

and a- O = Ox(—G). Then if we write
we have that each a; > —1.

Proof. Without loss of generality, we may assume that X is the spectrum of a local ring. We
choose ¢ € Mg  which induces a surjective map 1 : FfR — R. We notice that if we write

Ky -7 (Kx +Ay) =Y bE;

then all of the b; < a; and so it suffices to prove the statement for the b;.
Suppose then that one of the b; < —1. Localize at the generic point of the associated

E;. This gives us a DVR Oy 5, and a map {Z; D FiOx g, — Ogx g, that is also surjective.
Furthermore, the divisor corresponding to @Z is —b; ;. Therefore, our result follows from the
following lemma:

Lemma 1.6. If (S,A) is F-pure with A effective, then [A] is reduced (in other words, the
coefficients of A are less than or equal to 1).

Proof. Without loss of generality we may assume that S is a DVR with parameter s. Write
A = \div(s). Suppose that A > 1, we will show that (S, A) is not F-pure. Let Wg be the
generating map of Homg(F¢S, S). Then for any ¢ € Mg, we have ¢(__) = ®g(x - _) where
x = us™ and m > [(p® — 1)A\] > p°. But then clearly ¢(z) C (s) for all z € F£S proving
that no ¢ can be surjective. O

O

Corollary 1.7. [MvdK92] Suppose that X is a normal variety and T : X —>Xisa projective
birational map with normal X. If there exists a map ¢ : FEOx — Ox such that
(a) (X,Ay) = (X, ¢) is strongly F-regular.
(b) If we write K¢ — 7 (Kx + A) = Y a;E; then all a; satisfy —1 < a; < 0 (note the
lower bound follows from (a)).
Then R'mwg =0 for alli > 0. In fact, R'm.l/ (wy) =0 for all j.

Proof. The statement is local so we may assume that X is the spectrum of a local ring R. Fix
an anti-effective relatively m-ample Weil divisor £ on X and choose an element d € R such
that divg(d) > —E. By the first hypothesis, there exists an n > 0 such that ¢"(F]“dR) = R

say ¢"(F!“dc) = 1. Consider the map ¢ : F**R — R defined by ¢(_) = ¢(cd - __), noting
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that Ay > Ay Write K — 7" (Kx + A) =) b;E; and observe that —1 < b; < 0 (actually,
by = a; — Iﬁdiin(cd)). We also induce a map ¢ : FfOx((1 —p™) > biE;) — Ox
which sends 1 to 1. All of the a; and b; are non-positive, and so we have an inclusion
Oz COzx((1 —p™) > biE;). In fact, by construction we have that

Og € Ox(—E) C Ox(divg(d)) C Ox((1—p™) Y biEy).
In particular, O is Frobenius split, and we can express the splitting as the isomorphism
Oy — [0 — F*O%(—-F) — Ox.
Iterating this isomorphism m-times, we obtain the isomorphism
Ox — FI™*0g — FI™Og(~(1+p+ -+ + " )E) - Og

The idea will be we can use Frobenius to amplify the amplitude of E.
Dualizing, we obtain that

Wi FMwy o Ewi (14 p+ -+ 9" )E) o« wy

also an isomorphism. Taking cohomology gives us an isomorphism

W(wy) — FIMW (w3) — FI W (W) (L p+ -+ " )E) — W (wy).

Applying Rir, gives us the desired conclusion since E is anti-ample and we may take m >
0. O

We now relate the multiplier ideal and the test ideal.

Theorem 1.8. [Smi00], [Har05], [HY03], [Tak04] Suppose that (Xo = Spec Rg, Ao, afy) is
a triple in characteristic zero such that Kx, + Ao is Q-Cartier. Then for all p > 0,
(T(X, A, at))p =7(X,, Ap, a;).

Proof. We will be doing reduction to characteristic p > 0 here. We will not write the subscript
p (although will write the subscript 0). We first recall Hara’s lemma on surjectivity of the

dual Frobenius map (which we still haven’t proved).

Lemma 1.9. [Har98| Suppose that Ry is a ring of characteristic zero, T : )?0 — Spec Ry
1s a log resolution of singularities, Dy is a m-ample Q-divisor with simple normal crossings
support. We reduce this setup to characteristic p > 0. Then the natural map

(F)" = ®g : Flwg([p"D1) — wg, ([D])
surjects.

Fixing a log resolution Xy of X, we write ag - Oz, = Ox (—Go) and reduce this setup
to characteristic p > 0. We choose ¢y € Ox, an element whose power is going to be a test
element in characteristic p > 0, and then further multiply it by the product of the generators
of the a;. We choose a relatively ample divisor exceptional Ej in characteristic zero such
that [—W* (KXO + Ao) — tGO + EO — EdiV)}O (Co)—l = [—W*(KXO + Ao) — tGO + ED—‘ and also
reduce it to characteristic p > 0. Our Dy is going to be Ey— W(KXO +Ay) —tGy—e divg, (¢o).

After reduction to characteristic p > 0, we may assume that Kx + Ay is Q-Cartier with
index not divisible by p. Therefore, we may choose a ¢ : F°R — R corresponding to Ax as
before. As we’ve noted, this induces a map
¢ Fiwg([—m"(Kx+A)—tp*G+p°E+pedivg(c)]) = wig([—m"(Kx+A)—tG+E+edivg(c)])
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We claim that this map can be identified with:
(F) : Flwg([-p°m* (Kx+A)—tp°G+p° E4pe divy(c)]) — wi([—7" (Kx+A)—tG+E+edivg(c)])

Given this claim, § surjects. Now argue as we did for rational singularities. For e > 0, ,
of the domain of ¢ is contained inside

Fecraltor—1]

where ¢"! is a test element. The problem is the integral closure. We need calt®*-DI C

altP =1 But ¢ factors as both a test element d of R as well as the product of generators
of a. Therefore, calt®*~D1 C dalt*=DI+ where r is the number of generators of R. The
tight-closure Briancon-Skoda theorem (which we may prove a little later, []) tells us that this
is contained in al*®* V1 as desired. Then the sum of images of these maps (for e > 0) is the
test ideal.

To prove the claim, we argue as follows. Notice first that (F¢)Y : FfO3((1—p°)K3) — Oz
is (locally) the generating map as is ¢ : FeOz((p° — D)m*(Kx + A) — (p° — 1)K3) — Ox.
But O3(Kg+ (p° — 1)m"(Kx + A)) = FfO5((1 — p°)K5) so the two maps are actually the
same (up to multiplication by a unit). From there, the more complicated maps above were
then obtained by twisting by the same Q-divisors, and then doing the same inclusions. [

Corollary 1.10. A triple (X, A, a') in characteristic zero is Kawamata log terminal if and
only if it is of open strongly F-reqular type.

Remark 1.11. The following diagram explains the singularities we understand and the im-
plications between them.

Canonical
Log Terminal == Rational F-Regular =———= F-Rational
Log Canonical ——> Du Bois F-Pure/F-Split == F-Injective
:*

+ Gor. & normal + Gor.

It is an open question whether Du Bois singularities have dense F-injective type or whether
log canonical singularities have dense F-pure type.
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