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1. F -singularities and birational maps

Our goal in this section is to relate F -singularities and test ideals with log canonical and
log terminal singularities as well as multiplier ideals. In order to do this, we need to explain
how maps φ : F e

∗R→ R behave under birational maps.

Proposition 1.1. Suppose that π : X̃ → X is a proper birational map and φ ∈ HomR(F e
∗R,R).

Write
KX̃ −

∑
aiEi = f ∗(KR + ∆φ)

Then φ induces a map φ̃ : F e
∗OX̃((1− pe)

∑
aiEi)→ OX̃ which agrees with φ where π is an

isomorphism. Finally, it induces a map (which we also call φ̃)

φ̃ : F e
∗OX̃(d

∑
aiEie)→ OX̃(d

∑
aiEie).

Proof. Throughout, we remove the singular locus of X̃ if necessary so that it is regular, and
work with divisors on this locus. This is harmless though since we are looking at maps
between reflexive modules.

By assumption φ generates HomR(F e
∗R(d(pe − 1)∆φe), R) ∼= F e

∗R((1 − pe)(KR + ∆φ)) ∼=
F e
∗R. Thus we have a section d ∈ f ∗R((1 − pe)(KR + ∆φ)) ∼= OX̃ corresponding to φ, and

furthermore this section generates. So that we obtain a section d ∈ Γ(X̃,OX̃((1− pe)(KX̃ −∑
aiEi)) which generates as an OX̃-module. However, F e

∗OX̃((1 − pe)(KX̃ −
∑
aiEi)) =

H omOX
(F e
∗OX̃((1− pe)(

∑
aiEi)),OX̃) and we obtain our first statement easily.

For the second statement, consider φ̃ : F e
∗OX̃((1 − pe)

∑
aiEi) → OX̃ . Twisting by

OX̃(d
∑
aiEie) gives us a map

φ̃ : F e
∗OX̃((1− pe)

∑
aiEi + ped

∑
aiEie)→ OX̃(d

∑
aiEie)

However, (1 − pe)
∑
aiEi + ped

∑
aiEie ≥ d(1 − pe)

∑
aiEi + pe

∑
aiEie = d

∑
aiEie which

gives the desired map via composition with the inclusion. �

Remark 1.2. Restrict the above map φ̃ to an Ei such that ai ≤ 0. Localizing at the generic
point of that Ei gives us a “generating” map from OX̃,Ei

((1 − pe)aiEi) → OX̃,Ei
. In other

words, if we pay close attention to our embedding into the fraction field, the divisor associated

to φ̃ corresponds to
∑
−aiEi (at least for those Ei with non-positive ai). As we’ve previously

alluded to, one can work with anti-effective divisors too, in that case φ̃ corresponds to
−

∑
aiEi.

Remark 1.3. In fact, for any effective divisor E on X̃, π∗OX̃(d
∑
aiEie+E) is also stabilized

by φ.
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Remark 1.4. This immediately implies the inclusion τb(R,∆φ) ⊆ J (R,∆φ) assuming the
existence of resolutions of singularities in characteristic p > 0. In fact, a slight modification
of this implies that τb(R,∆, a

t) ⊆ J (R,∆, at) under the assumption that KX + ∆ is Q-
Gorenstein. To see this, assume that R is local notice that for every ψ ∈M e

∆,at , we have that

∆ψ = ∆ψ′ + 1
pe−1

div(f) where ∆ψ′ ≥ ∆ and f ∈ adt(p
e−1)e. It easily follows from the method

of the proof and Remark 1.3 above that π∗OX̃(dKX̃ − π∗(KX + ∆)− tGe) is ψ-stable.

We’d now like to relate F -pure and log canonical singularities.

Theorem 1.5. [HW02] Suppose that (X,∆, at) has F -pure singularities and that KX + ∆ is

Q-Gorenstein. Further suppose that π : X̃ → X is a proper birational map with X̃ normal
and a · OX̃ = OX̃(−G). Then if we write

KX̃ − π
∗(KX + ∆)− tG =

∑
aiEi

we have that each ai ≥ −1.

Proof. Without loss of generality, we may assume that X is the spectrum of a local ring. We
choose ψ ∈M e

∆,at which induces a surjective map ψ : F e
∗R→ R. We notice that if we write

KX̃ − π
∗(KX + ∆ψ) =

∑
biEi

then all of the bi ≤ ai and so it suffices to prove the statement for the bi.
Suppose then that one of the bi < −1. Localize at the generic point of the associated

Ei. This gives us a DVR OX̃,Ei
and a map ψ̃ : F e

∗OX̃,Ei
→ OX̃,Ei

that is also surjective.

Furthermore, the divisor corresponding to ψ̃ is −biEi. Therefore, our result follows from the
following lemma:

Lemma 1.6. If (S,∆) is F -pure with ∆ effective, then d∆e is reduced (in other words, the
coefficients of ∆ are less than or equal to 1).

Proof. Without loss of generality we may assume that S is a DVR with parameter s. Write
∆ = λ div(s). Suppose that λ > 1, we will show that (S,∆) is not F -pure. Let ΨS be the
generating map of HomS(F e

∗S, S). Then for any φ ∈ M e
∆, we have φ( ) = ΦS(x · ) where

x = usm and m ≥ d(pe − 1)λe ≥ pe. But then clearly φ(z) ⊆ (s) for all z ∈ F e
∗S proving

that no φ can be surjective. �

�

Corollary 1.7. [MvdK92] Suppose that X is a normal variety and π : X̃ → X is a projective

birational map with normal X̃. If there exists a map φ : F e
∗OX → OX such that

(a) (X,∆φ) = (X,φ) is strongly F -regular.
(b) If we write KX̃ − π∗(KX + ∆) =

∑
aiEi then all ai satisfy −1 < ai ≤ 0 (note the

lower bound follows from (a)).

Then Riπ∗ωX̃ = 0 for all i > 0. In fact, Riπ∗h
j(ω

q̃
X

) = 0 for all j.

Proof. The statement is local so we may assume that X is the spectrum of a local ring R. Fix

an anti-effective relatively π-ample Weil divisor E on X̃ and choose an element d ∈ R such
that divX̃(d) ≥ −E. By the first hypothesis, there exists an n� 0 such that φn(F ne

∗ dR) = R
say φn(F ne

∗ dc) = 1. Consider the map ψ : F ne
∗ R → R defined by φ( ) = φ(cd · ), noting
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that ∆ψ ≥ ∆φ. Write KX̃ − π∗(KX + ∆) =
∑
biEi and observe that −1 ≤ bi < 0 (actually,

bi = ai − 1
pne−1

divEi
(cd)). We also induce a map ψ̃ : F e

∗OX̃((1 − pne)
∑
biEi) → OX̃

which sends 1 to 1. All of the ai and bi are non-positive, and so we have an inclusion
OX̃ ⊆ OX̃((1− pne)

∑
biEi). In fact, by construction we have that

OX̃ ⊆ OX̃(−E) ⊆ OX̃(divX̃(d)) ⊆ OX̃((1− pne)
∑

biEi).

In particular, OX̃ is Frobenius split, and we can express the splitting as the isomorphism

OX̃ → F ne
∗ OX̃ → F ne

∗ OX̃(−E)→ OX̃ .
Iterating this isomorphism m-times, we obtain the isomorphism

OX̃ → Fmne
∗ OX̃ → Fmne

∗ OX̃(−(1 + p+ · · ·+ pm−1)E)→ OX̃
The idea will be we can use Frobenius to amplify the amplitude of E.

Dualizing, we obtain that

ω
q̃
X
← Fmne

∗ ω
q̃
X
← Fmne

∗ ω
q̃
X

((1 + p+ · · ·+ pm−1)E)← ω
q̃
X

also an isomorphism. Taking cohomology gives us an isomorphism

hj(ω
q̃
X

)← Fmne
∗ hj(ω

q̃
X

)← Fmne
∗ hj(ω

q̃
X

)((1 + p+ · · ·+ pm−1)E)← hj(ω
q̃
X

).

Applying Riπ∗ gives us the desired conclusion since E is anti-ample and we may take m�
0. �

We now relate the multiplier ideal and the test ideal.

Theorem 1.8. [Smi00], [Har05], [HY03], [Tak04] Suppose that (X0 = SpecR0,∆0, a
t
0) is

a triple in characteristic zero such that KX0 + ∆0 is Q-Cartier. Then for all p � 0,
(J (X,∆, at))p = τ(Xp,∆p, a

t
p).

Proof. We will be doing reduction to characteristic p > 0 here. We will not write the subscript
p (although will write the subscript 0). We first recall Hara’s lemma on surjectivity of the
dual Frobenius map (which we still haven’t proved).

Lemma 1.9. [Har98] Suppose that R0 is a ring of characteristic zero, π : X̃0 → SpecR0

is a log resolution of singularities, D0 is a π-ample Q-divisor with simple normal crossings
support. We reduce this setup to characteristic p� 0. Then the natural map

(F e)∨ = ΦX̃ : F e
∗ωX̃(dpeDe)→ ωX̃p

(dDe)
surjects.

Fixing a log resolution X̃0 of X0 we write a0 · OX̃0
= OX̃0

(−G0) and reduce this setup
to characteristic p > 0. We choose c0 ∈ OX0 an element whose power is going to be a test
element in characteristic p� 0, and then further multiply it by the product of the generators
of the ai. We choose a relatively ample divisor exceptional E0 in characteristic zero such
that d−π∗(KX0 + ∆0) − tG0 + E0 − ε divX̃0

(c0)e = d−π∗(KX0 + ∆0) − tG0 + E0e and also

reduce it to characteristic p > 0. Our D0 is going to be E0−π(KX0 +∆0)− tG0−ε divX̃0
(c0).

After reduction to characteristic p� 0, we may assume that KX + ∆X is Q-Cartier with
index not divisible by p. Therefore, we may choose a φ : F e

∗R→ R corresponding to ∆X as
before. As we’ve noted, this induces a map

φ̃ : F e
∗ωX̃(d−π∗(KX+∆)−tpeG+peE+peε divX̃(c)e)→ ωX̃(d−π∗(KX+∆)−tG+E+ε divX̃(c)e)
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We claim that this map can be identified with:

(F e)∨ : F e
∗ωX̃(d−peπ∗(KX+∆)−tpeG+peE+peε divX̃(c)e)→ ωX̃(d−π∗(KX+∆)−tG+E+ε divX̃(c)e)

Given this claim, φ̃ surjects. Now argue as we did for rational singularities. For e � 0, π∗
of the domain of φ̃ is contained inside

F e
∗ c

nadt(pe−1)e

where cn−1 is a test element. The problem is the integral closure. We need cadt(pe−1)e ⊆
adt(p

e−1)e. But c factors as both a test element d of R as well as the product of generators

of a. Therefore, cadt(pe−1)e ⊆ dadt(pe−1)e+r where r is the number of generators of R. The
tight-closure Briancon-Skoda theorem (which we may prove a little later, []) tells us that this
is contained in adt(p

e−1)e as desired. Then the sum of images of these maps (for e� 0) is the
test ideal.

To prove the claim, we argue as follows. Notice first that (F e)∨ : F e
∗OX̃((1−pe)KX̃)→ OX̃

is (locally) the generating map as is φ̃ : F e
∗OX̃((pe − 1)π∗(KX + ∆) − (pe − 1)KX̃) → OX̃ .

But OX̃(KX̃ + (pe − 1)π∗(KX + ∆)) ∼= F e
∗OX̃((1− pe)KX̃) so the two maps are actually the

same (up to multiplication by a unit). From there, the more complicated maps above were
then obtained by twisting by the same Q-divisors, and then doing the same inclusions. �

Corollary 1.10. A triple (X,∆, at) in characteristic zero is Kawamata log terminal if and
only if it is of open strongly F -regular type.

Remark 1.11. The following diagram explains the singularities we understand and the im-
plications between them.

Canonical

��
Log Terminal

qy %-
+3

��

Rational

��

qy %-
F -Regular +3

��

F -Rational

��
Log Canonical +3

emW_

+ Gor. & normal

Du Boisem F -Pure/F -Split +3
Ya

+ Gor.

F -Injective

It is an open question whether Du Bois singularities have dense F -injective type or whether
log canonical singularities have dense F -pure type.
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