Test ideals for non- \mathbb{Q} -Gorenstein rings

Karl Schwede¹

¹Department of Mathematics University of Michigan

2010 Joint Mathematics Meetings

Karl Schwede

Outline

Motivation and the statement of the theorem

Proof methods

Karl Schwede

イロト イポト イヨト

Outline

Motivation and the statement of the theorem

Proof methods

Karl Schwede

< □ > < 同 > < 三 > <

ъ

Multiplier ideals vs test ideals

• Suppose *R* is a normal domain containing a field.

Characteristic p > 0The (big) test ideal $\tau_b(R)$ measures the singularities of *R* **Characteristic** 0 Assume *R* is \mathbb{Q} -*Gorenstein* The multiplier ideal $\mathcal{J}(R)$ measures singularities of *R*

Theorem (Smith, Hara)

Reducing the multiplier ideal to characteristic $p \gg 0$ yields the test ideal.

Goal

Multiplier ideals vs test ideals

• Suppose *R* is a normal domain containing a field.

Characteristic p > 0The (big) test ideal $\tau_b(R)$ measures the singularities of R **Characteristic** 0 Assume *R* is \mathbb{Q} -*Gorenstein* The multiplier ideal $\mathcal{J}(R)$ measures singularities of *R*

Theorem (Smith, Hara)

Reducing the multiplier ideal to characteristic $p \gg 0$ yields the test ideal.

Goal

Multiplier ideals vs test ideals

• Suppose *R* is a normal domain containing a field.

Characteristic p > 0The (big) test ideal $\tau_b(R)$ measures the singularities of R

Characteristic 0 Assume *R* is \mathbb{Q} -*Gorenstein* The multiplier ideal $\mathcal{J}(R)$ measures singularities of *R*

Theorem (Smith, Hara)

Reducing the multiplier ideal to characteristic $p \gg 0$ yields the test ideal.

Goal

Multiplier ideals vs test ideals

• Suppose *R* is a normal domain containing a field.

Characteristic p > 0The (big) test ideal $\tau_b(R)$ measures the singularities of R

Characteristic 0 Assume *R* is \mathbb{Q} -*Gorenstein* The multiplier ideal $\mathcal{J}(R)$ measures singularities of *R*

Theorem (Smith, Hara)

Reducing the multiplier ideal to characteristic $p \gg 0$ yields the test ideal.

Goal

Multiplier ideals vs test ideals

• Suppose *R* is a normal domain containing a field.

Characteristic p > 0The (big) test ideal $\tau_b(R)$ measures the singularities of R

Characteristic 0 Assume *R* is \mathbb{Q} -*Gorenstein* The multiplier ideal $\mathcal{J}(R)$ measures singularities of *R*

Theorem (Smith, Hara)

Reducing the multiplier ideal to characteristic $p \gg 0$ yields the test ideal.

Goal

The Q-Gorenstein hypotheis

• But what about when *R* is not Q-Gorenstein.

- One can define the test ideal. But not the multiplier ideal.
- A fix involves "pairs", (R, Δ) .
- Here Δ is an effective \mathbb{Q} -divisor and $K_R + \Delta$ is \mathbb{Q} -Cartier.
 - Q-Cartier means that there exists some n ∈ Z such that n∆ is integral (all denominators were cleared) and nK_X + n∆ is Cartier (ie, locally trivial in the divisor class group).
- Then there is the multiplier ideal *J*(*X*, Δ) which measures singularities of both *X* and Δ (no canonical choice of Δ)

- But what about when *R* is not Q-Gorenstein.
- One can define the test ideal. But not the multiplier ideal.
- A fix involves "pairs", (R, Δ) .
- Here Δ is an effective \mathbb{Q} -divisor and $K_R + \Delta$ is \mathbb{Q} -Cartier.
 - Q-Cartier means that there exists some n ∈ Z such that n∆ is integral (all denominators were cleared) and nK_X + n∆ is Cartier (ie, locally trivial in the divisor class group).
- Then there is the multiplier ideal *J*(*X*, Δ) which measures singularities of both *X* and Δ (no canonical choice of Δ)

The Q-Gorenstein hypotheis

- But what about when *R* is not Q-Gorenstein.
- One can define the test ideal. But not the multiplier ideal.
- A fix involves "pairs", (R, Δ) .
- Here Δ is an effective \mathbb{Q} -divisor and $K_R + \Delta$ is \mathbb{Q} -Cartier.

 Q-Cartier means that there exists some n ∈ Z such that n∆ is integral (all denominators were cleared) and nK_X + n∆ is Cartier (ie, locally trivial in the divisor class group).

 Then there is the multiplier ideal *J*(*X*, Δ) which measures singularities of both *X* and Δ (no canonical choice of Δ)

- But what about when *R* is not Q-Gorenstein.
- One can define the test ideal. But not the multiplier ideal.
- A fix involves "pairs", (R, Δ) .
- Here Δ is an effective \mathbb{Q} -divisor and $K_R + \Delta$ is \mathbb{Q} -Cartier.
 - \mathbb{Q} -*Cartier* means that there exists some $n \in \mathbb{Z}$ such that $n\Delta$ is integral (all denominators were cleared) and $nK_X + n\Delta$ is Cartier (ie, locally trivial in the divisor class group).
- Then there is the multiplier ideal *J*(*X*, Δ) which measures singularities of both *X* and Δ (no canonical choice of Δ)

- But what about when *R* is not Q-Gorenstein.
- One can define the test ideal. But not the multiplier ideal.
- A fix involves "pairs", (R, Δ) .
- Here Δ is an effective \mathbb{Q} -divisor and $K_R + \Delta$ is \mathbb{Q} -Cartier.
 - \mathbb{Q} -*Cartier* means that there exists some $n \in \mathbb{Z}$ such that $n\Delta$ is integral (all denominators were cleared) and $nK_X + n\Delta$ is Cartier (ie, locally trivial in the divisor class group).
- Then there is the multiplier ideal *J*(*X*, Δ) which measures singularities of both *X* and Δ (no canonical choice of Δ)

- But what about when *R* is not Q-Gorenstein.
- One can define the test ideal. But not the multiplier ideal.
- A fix involves "pairs", (R, Δ) .
- Here Δ is an effective \mathbb{Q} -divisor and $K_R + \Delta$ is \mathbb{Q} -Cartier.
 - \mathbb{Q} -*Cartier* means that there exists some $n \in \mathbb{Z}$ such that $n\Delta$ is integral (all denominators were cleared) and $nK_X + n\Delta$ is Cartier (ie, locally trivial in the divisor class group).
- Then there is the multiplier ideal *J*(*X*, Δ) which measures singularities of both *X* and Δ (no canonical choice of Δ)

de Fernex Hacon multiplier ideals

Assume X is NOT necessarily Q-Gorenstein.

- de Fernex and Hacon consider all the possible Δ .
- They define a multiplier ideal *J*(*X*) even when *X* is not necessarily ℚ-Gorenstein.

$$\mathcal{J}(X) = \sum_{\Delta} \mathcal{J}(X, \Delta) = \max_{\Delta} \mathcal{J}(X, \Delta)$$

• The same holds true for multiplier ideals involving a.

de Fernex Hacon multiplier ideals

- Assume X is NOT necessarily Q-Gorenstein.
- de Fernex and Hacon consider all the possible Δ.
- They define a multiplier ideal *J*(*X*) even when *X* is not necessarily ℚ-Gorenstein.

$$\mathcal{J}(X) = \sum_{\Delta} \mathcal{J}(X, \Delta) = \max_{\Delta} \mathcal{J}(X, \Delta)$$

• The same holds true for multiplier ideals involving a.

de Fernex Hacon multiplier ideals

- Assume X is NOT necessarily Q-Gorenstein.
- de Fernex and Hacon consider all the possible Δ .
- They define a multiplier ideal *J*(*X*) even when *X* is not necessarily Q-Gorenstein.

$$\mathcal{J}(X) = \sum_{\Delta} \mathcal{J}(X, \Delta) = \max_{\Delta} \mathcal{J}(X, \Delta)$$

The same holds true for multiplier ideals involving α.

de Fernex Hacon multiplier ideals

- Assume X is NOT necessarily Q-Gorenstein.
- de Fernex and Hacon consider all the possible Δ .
- They define a multiplier ideal *J*(*X*) even when *X* is not necessarily Q-Gorenstein.

$$\mathcal{J}(X) = \sum_{\Delta} \mathcal{J}(X, \Delta) = \max_{\Delta} \mathcal{J}(X, \Delta)$$

The same holds true for multiplier ideals involving a.

Test ideals of pairs

 Takagi introduced a notion of test ideals (and tight closure) for pairs (R, Δ).

Theorem (Takagi)

The multiplier ideal $\mathcal{J}(R, \Delta)$ becomes the test ideal $\tau(R, \Delta)$ after reduction to characteristic $p \gg 0$.

- Takagi's (big) test ideal $\tau(R, \Delta)$ is defined even when $K_R + \Delta$ is *not* \mathbb{Q} -*Cartier*.
- However, it is better behaved when $K_R + \Delta$ is Q-Cartier.
 - For example, τ_b(R, Δ) = τ(R, Δ) (the big test ideal = the finitistic test ideal).

イロト イポト イヨト イヨト

Test ideals of pairs

 Takagi introduced a notion of test ideals (and tight closure) for pairs (R, Δ).

Theorem (Takagi)

The multiplier ideal $\mathcal{J}(R, \Delta)$ becomes the test ideal $\tau(R, \Delta)$ after reduction to characteristic $p \gg 0$.

- Takagi's (big) test ideal $\tau(R, \Delta)$ is defined even when $K_R + \Delta$ is *not* \mathbb{Q} -*Cartier*.
- However, it is better behaved when $K_R + \Delta$ is Q-Cartier.
 - For example, τ_b(R, Δ) = τ(R, Δ) (the big test ideal = the finitistic test ideal).

イロト イポト イヨト イヨト

Test ideals of pairs

 Takagi introduced a notion of test ideals (and tight closure) for pairs (R, Δ).

Theorem (Takagi)

The multiplier ideal $\mathcal{J}(R, \Delta)$ becomes the test ideal $\tau(R, \Delta)$ after reduction to characteristic $p \gg 0$.

- Takagi's (big) test ideal *τ*(*R*, Δ) is defined even when *K_R* + Δ is *not* ℚ-*Cartier*.
- However, it is better behaved when $K_R + \Delta$ is Q-Cartier.
 - For example, τ_b(R, Δ) = τ(R, Δ) (the big test ideal = the finitistic test ideal).

イロト イポト イヨト イヨト

Test ideals of pairs

 Takagi introduced a notion of test ideals (and tight closure) for pairs (R, Δ).

Theorem (Takagi)

The multiplier ideal $\mathcal{J}(R, \Delta)$ becomes the test ideal $\tau(R, \Delta)$ after reduction to characteristic $p \gg 0$.

- Takagi's (big) test ideal *τ*(*R*, Δ) is defined even when *K_R* + Δ is *not* ℚ-*Cartier*.
- However, it is better behaved when $K_R + \Delta$ is \mathbb{Q} -Cartier.
 - For example, $\tau_b(R, \Delta) = \tau(R, \Delta)$ (the big test ideal = the finitistic test ideal).

イロト イポト イヨト

Test ideals of pairs

 Takagi introduced a notion of test ideals (and tight closure) for pairs (R, Δ).

Theorem (Takagi)

The multiplier ideal $\mathcal{J}(R, \Delta)$ becomes the test ideal $\tau(R, \Delta)$ after reduction to characteristic $p \gg 0$.

- Takagi's (big) test ideal *τ*(*R*, Δ) is defined even when *K_R* + Δ is *not* ℚ-*Cartier*.
- However, it is better behaved when $K_R + \Delta$ is \mathbb{Q} -Cartier.
 - For example, τ_b(R, Δ) = τ(R, Δ) (the big test ideal = the finitistic test ideal).

< ロ > < 同 > < 三 >

The main theorem

Theorem

Given a normal F-finite domain R

$$au_b(R) = \sum_{\Delta} au_b(R, \Delta)$$

Where the sum is over Δ such that $K_R + \Delta$ is \mathbb{Q} -Cartier.

- The normality hypothesis can be removed, but then the statement becomes more complicated.
- One can also show that

$$au_b(R,\mathfrak{a}^t) = \sum_{\Delta} au_b(R,\Delta,\mathfrak{a}^t).$$

The main theorem

Theorem

Given a normal F-finite domain R

$$au_b({m R}) = \sum_\Delta au_b({m R},\Delta)$$

Where the sum is over Δ such that $K_R + \Delta$ is \mathbb{Q} -Cartier.

• The normality hypothesis can be removed, but then the statement becomes more complicated.

• One can also show that

$$au_b(R,\mathfrak{a}^t) = \sum_{\Delta} au_b(R,\Delta,\mathfrak{a}^t).$$

The main theorem

Theorem

Given a normal F-finite domain R

$$au_b({m R}) = \sum_\Delta au_b({m R},\Delta)$$

Where the sum is over Δ such that $K_R + \Delta$ is \mathbb{Q} -Cartier.

- The normality hypothesis can be removed, but then the statement becomes more complicated.
- One can also show that

$$au_b(\boldsymbol{R},\mathfrak{a}^t) = \sum_{\Delta} au_b(\boldsymbol{R},\Delta,\mathfrak{a}^t).$$

Outline

Motivation and the statement of the theorem

Proof methods

Karl Schwede

<ロト < 同ト < 三ト

Q-divisors Δ such that $K_R + \Delta$ is Q-Cartier

- In fact, Q-divisors Δ such that K_R + Δ is Q-Cartier (with index not divisible by p > 0) are VERY NATURAL in characteristic p.
- In particular, locally, there is a bijection of sets

 $\left\{\begin{array}{c} \text{Effective } \mathbb{Q}\text{-divisors } \Delta \text{ so} \\ \text{that } (p^e - 1)(\mathcal{K}_X + \Delta) \\ \text{is Cartier} \end{array}\right\} \leftrightarrow \left\{\begin{array}{c} \text{Nonzero elements of} \\ \text{Hom}_R(R^{1/p^e}, R) \end{array}\right\} \Big/ \sim$

• And if *R* is complete, then this is also equivalent to:

 $\operatorname{Nonzero} R\{F^e\}$ -module structures on E_R

Q-divisors Δ such that $K_R + \Delta$ is Q-Cartier

- In fact, Q-divisors Δ such that K_R + Δ is Q-Cartier (with index not divisible by p > 0) are VERY NATURAL in characteristic p.
- In particular, locally, there is a bijection of sets

$$\left\{\begin{array}{c} \text{Effective } \mathbb{Q}\text{-divisors } \Delta \text{ so} \\ \text{that } (p^e - 1)(\mathcal{K}_X + \Delta) \\ \text{ is Cartier} \end{array}\right\} \leftrightarrow \left\{\begin{array}{c} \text{Nonzero elements of} \\ \text{Hom}_R(R^{1/p^e}, R) \end{array}\right\} \Big/ \sim$$

• And if *R* is complete, then this is also equivalent to:

 $\operatorname{Nonzero} R\{F^e\}$ -module structures on E_R

4

Q-divisors Δ such that $K_R + \Delta$ is Q-Cartier

- In fact, Q-divisors Δ such that K_R + Δ is Q-Cartier (with index not divisible by p > 0) are VERY NATURAL in characteristic p.
- In particular, locally, there is a bijection of sets

$$\left(\begin{array}{c} \text{Effective } \mathbb{Q}\text{-divisors } \Delta \text{ so} \\ \text{that } (p^e - 1)(\mathcal{K}_X + \Delta) \\ \text{ is Cartier} \end{array}\right) \leftrightarrow \left\{\begin{array}{c} \text{Nonzero elements of} \\ \text{Hom}_{\mathcal{B}}(\mathcal{R}^{1/p^e}, \mathcal{R}) \end{array}\right\} \Big/ \sim$$

• And if *R* is complete, then this is also equivalent to:

$${iggl{ Nonzero } R\{F^e\}}$$
-module
structures on E_R

The test ideal with respect to this alternate framework

 With this framework assume that Δ corresponds to φ : R^{1/p^e} → R Then

Definition

The big test ideal $\tau_b(R, \Delta)$ is the unique smallest non-zero ideal J of R such that $\phi(J^{1/p^e}) \subseteq J$.

Definition

The big test ideal $\tau_b(R)$ is the unique smallest non-zero ideal J of R such that $\phi(J^{1/p^e}) \subseteq J$ for all $\phi \in \operatorname{Hom}_R(R^{1/p^e}, R)$.

• This makes the following equality plausible.

$$\tau_b(R) = \sum_{\Lambda} \tau_b(R, \Delta).$$

ヘロト ヘヨト ヘヨト

The test ideal with respect to this alternate framework

 With this framework assume that Δ corresponds to φ : R^{1/p^e} → R Then

Definition

The big test ideal $\tau_b(R, \Delta)$ is the unique smallest non-zero ideal J of R such that $\phi(J^{1/p^e}) \subseteq J$.

Definition

The big test ideal $\tau_b(R)$ is the unique smallest non-zero ideal J of R such that $\phi(J^{1/p^e}) \subseteq J$ for all $\phi \in \operatorname{Hom}_R(R^{1/p^e}, R)$.

• This makes the following equality plausible.

$$\tau_b(R) = \sum_{\Lambda} \tau_b(R, \Delta).$$

ヘロト ヘヨト ヘヨト

The test ideal with respect to this alternate framework

 With this framework assume that Δ corresponds to φ : R^{1/p^e} → R Then

Definition

The big test ideal $\tau_b(R, \Delta)$ is the unique smallest non-zero ideal J of R such that $\phi(J^{1/p^e}) \subseteq J$.

Definition

The big test ideal $\tau_b(R)$ is the unique smallest non-zero ideal J of R such that $\phi(J^{1/p^e}) \subseteq J$ for all $\phi \in \operatorname{Hom}_R(R^{1/p^e}, R)$.

• This makes the following equality plausible.

$$au_b(\mathbf{R}) = \sum_{\Delta} au_b(\mathbf{R}, \Delta).$$

Methods of the actual proof

 One can turn ⊕_{e≥0} Hom_R(R^{1/p^e}, R) into a non-commutative algebra (multiplication is twisted composition). It is not finitely generated in general.

• Then the noetherian property of *R* implies that $\tau_b(R)$ is the smallest non-zero ideal stable under a finite set of maps

 $\{\phi_i \in \operatorname{Hom}_R(R^{1/p^{e_i}}, R)\}_{i=1,...,n}$

- Set Γ_i to be the divisor corresponding to ϕ_i .
- Careful work with test elements then allows one to show that $\tau_b(R)$ is equal to a sum of $\tau_b(R, \Delta_{i_1,...,i_m})$ where the $\Delta_{i_1,...,i_m}$ are linear combinations of the \mathbb{Q} -divisors Γ_i .
- This completes the proof.

Methods of the actual proof

- One can turn ⊕_{e≥0} Hom_R(R^{1/p^e}, R) into a non-commutative algebra (multiplication is twisted composition). It is not finitely generated in general.
- Then the noetherian property of *R* implies that τ_b(*R*) is the smallest non-zero ideal stable under a finite set of maps

$$\{\phi_i \in \operatorname{Hom}_R(R^{1/p^{e_i}}, R)\}_{i=1,...,n}$$

- Set Γ_i to be the divisor corresponding to ϕ_i .
- Careful work with test elements then allows one to show that τ_b(R) is equal to a sum of τ_b(R, Δ_{i1},...,i_m) where the Δ_{i1},...,i_m are linear combinations of the Q-divisors Γ_i.
- This completes the proof.

Methods of the actual proof

- One can turn ⊕_{e≥0} Hom_R(R^{1/p^e}, R) into a non-commutative algebra (multiplication is twisted composition). It is not finitely generated in general.
- Then the noetherian property of *R* implies that τ_b(*R*) is the smallest non-zero ideal stable under a finite set of maps

$$\{\phi_i \in \operatorname{Hom}_R(R^{1/p^{e_i}}, R)\}_{i=1,...,n}$$

- Set Γ_i to be the divisor corresponding to ϕ_i .
- Careful work with test elements then allows one to show that $\tau_b(R)$ is equal to a sum of $\tau_b(R, \Delta_{i_1,...,i_m})$ where the $\Delta_{i_1,...,i_m}$ are linear combinations of the \mathbb{Q} -divisors Γ_i .
- This completes the proof.

Methods of the actual proof

- One can turn ⊕_{e≥0} Hom_R(R^{1/p^e}, R) into a non-commutative algebra (multiplication is twisted composition). It is not finitely generated in general.
- Then the noetherian property of *R* implies that τ_b(*R*) is the smallest non-zero ideal stable under a finite set of maps

$$\{\phi_i \in \operatorname{Hom}_R(R^{1/p^{e_i}}, R)\}_{i=1,...,n}$$

- Set Γ_i to be the divisor corresponding to ϕ_i .
- Careful work with test elements then allows one to show that τ_b(R) is equal to a sum of τ_b(R, Δ_{i1},...,i_m) where the Δ_{i1},...,i_m are linear combinations of the Q-divisors Γ_i.

< < >> < </p>

• This completes the proof.

Methods of the actual proof

- One can turn ⊕_{e≥0} Hom_R(R^{1/p^e}, R) into a non-commutative algebra (multiplication is twisted composition). It is not finitely generated in general.
- Then the noetherian property of *R* implies that τ_b(*R*) is the smallest non-zero ideal stable under a finite set of maps

$$\{\phi_i \in \operatorname{Hom}_R(R^{1/p^{e_i}}, R)\}_{i=1,...,n}$$

- Set Γ_i to be the divisor corresponding to ϕ_i .
- Careful work with test elements then allows one to show that τ_b(R) is equal to a sum of τ_b(R, Δ_{i1},...,i_m) where the Δ_{i1},...,i_m are linear combinations of the Q-divisors Γ_j.
- This completes the proof.

Outline

Motivation and the statement of the theorem

Proof methods

Karl Schwede

<ロト < 同ト < 三ト

Comments on the proof

The proof also allows one to show that

$$au_b(\pmb{R},\mathfrak{a}^t) = \sum_{j=1}^m au_b(\pmb{R},\Delta_j).$$

for some Δ_j where $K_R + \Delta_j$ are \mathbb{Q} -Cartier with index not divisible by p.

• So you can replace test ideals of "ideals" with test ideals of "divisors". The corresponding statement holds multiplier ideals (and is very very useful).

ヘロト ヘ戸ト ヘヨト ヘ

• The biggest problem is that the △ that are constructed depend on the characteristic.

Comments on the proof

The proof also allows one to show that

$$au_b(\pmb{R},\mathfrak{a}^t) = \sum_{j=1}^m au_b(\pmb{R},\Delta_j).$$

for some Δ_j where $K_R + \Delta_j$ are Q-Cartier with index not divisible by p.

• So you can replace test ideals of "ideals" with test ideals of "divisors". The corresponding statement holds multiplier ideals (and is very very useful).

ヘロト ヘ戸ト ヘヨト ヘ

• The biggest problem is that the △ that are constructed depend on the characteristic.

Comments on the proof

The proof also allows one to show that

$$au_b(\pmb{R},\mathfrak{a}^t) = \sum_{j=1}^m au_b(\pmb{R},\Delta_j).$$

for some Δ_j where $K_R + \Delta_j$ are Q-Cartier with index not divisible by p.

• So you can replace test ideals of "ideals" with test ideals of "divisors". The corresponding statement holds multiplier ideals (and is very very useful).

• The biggest problem is that the △ that are constructed depend on the characteristic.

Further questions

Question

Does the de Fernex-Hacon multiplier ideal $\mathcal{J}(R, \mathfrak{a}^t)$ reduce to the (big) test ideal $\tau_b(R, \mathfrak{a}^t)$ for $p \gg 0$?

• The main theorem above provides strong evidence that this is the case.

Question

Is it true that there exists a divisor Δ such that

 $\tau_b(\boldsymbol{R},\mathfrak{a}^t)=\tau_b(\boldsymbol{R},\Delta,\mathfrak{a}^t)$

• To approach this question, one may need to work over an infinite field.

ヘロト ヘ戸ト ヘヨト ヘ

Further questions

Question

Does the de Fernex-Hacon multiplier ideal $\mathcal{J}(R, \mathfrak{a}^t)$ reduce to the (big) test ideal $\tau_b(R, \mathfrak{a}^t)$ for $p \gg 0$?

• The main theorem above provides strong evidence that this is the case.

Question

Is it true that there exists a divisor Δ such that

 $\tau_b(\boldsymbol{R},\mathfrak{a}^t)=\tau_b(\boldsymbol{R},\Delta,\mathfrak{a}^t)$

• To approach this question, one may need to work over an infinite field.

Further questions

Question

Does the de Fernex-Hacon multiplier ideal $\mathcal{J}(R, \mathfrak{a}^t)$ reduce to the (big) test ideal $\tau_b(R, \mathfrak{a}^t)$ for $p \gg 0$?

• The main theorem above provides strong evidence that this is the case.

Question

Is it true that there exists a divisor Δ such that

$$\tau_b(\boldsymbol{R},\mathfrak{a}^t)=\tau_b(\boldsymbol{R},\Delta,\mathfrak{a}^t)$$

• To approach this question, one may need to work over an infinite field.

ヘロト ヘ戸ト ヘヨト ヘ

Outline

Motivation and the statement of the theorem

Proof methods

Karl Schwede

<ロト < 同ト < 三ト

Frobenius splitting conference

- There will be a conference in Ann Arbor Michigan on Frobenius splitting and related techniques.
 - A Frobenius splitting is a map φ ∈ Hom_R(R^{1/p^e}, R) such that φ(1) = 1.
- Date: May 17-22, 2010.
- Organizing committee: M. Blickle, M. Brion, F. Enescu, S. Kumar, M. Mustaţă, K. Schwede

< ロ > < 同 > < 三 >

• There will be funding for graduate students and young researchers.

Frobenius splitting conference

- There will be a conference in Ann Arbor Michigan on Frobenius splitting and related techniques.
 - A Frobenius splitting is a map φ ∈ Hom_R(R^{1/p^e}, R) such that φ(1) = 1.
- Date: May 17-22, 2010.
- Organizing committee: M. Blickle, M. Brion, F. Enescu, S. Kumar, M. Mustaţă, K. Schwede

< ロ > < 同 > < 三 >

• There will be funding for graduate students and young researchers.

Frobenius splitting conference

- There will be a conference in Ann Arbor Michigan on Frobenius splitting and related techniques.
 - A Frobenius splitting is a map φ ∈ Hom_R(R^{1/p^e}, R) such that φ(1) = 1.
- Date: May 17-22, 2010.
- Organizing committee: M. Blickle, M. Brion, F. Enescu, S. Kumar, M. Mustaţă, K. Schwede
- There will be funding for graduate students and young researchers.

Frobenius splitting conference

- There will be a conference in Ann Arbor Michigan on Frobenius splitting and related techniques.
 - A Frobenius splitting is a map φ ∈ Hom_R(R^{1/p^e}, R) such that φ(1) = 1.
- Date: May 17-22, 2010.
- Organizing committee: M. Blickle, M. Brion, F. Enescu, S. Kumar, M. Mustaţă, K. Schwede
- There will be funding for graduate students and young researchers.

Frobenius splitting conference

- There will be a conference in Ann Arbor Michigan on Frobenius splitting and related techniques.
 - A Frobenius splitting is a map φ ∈ Hom_R(R^{1/p^e}, R) such that φ(1) = 1.
- Date: May 17-22, 2010.
- Organizing committee: M. Blickle, M. Brion, F. Enescu, S. Kumar, M. Mustaţă, K. Schwede
- There will be funding for graduate students and young researchers.