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Multiplier ideals vs test ideals

Suppose R is a normal domain containing a field.

Characteristic p > 0
The (big) test ideal τb(R)
measures
the singularities of R

Characteristic 0
Assume R is Q-Gorenstein
The multiplier ideal J (R)
measures singularities of R

Theorem (Smith, Hara)
Reducing the multiplier ideal to characteristic p � 0 yields the
test ideal.

Goal
We want to understand what is going on without the
Q-Gorenstein hypothesis
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The Q-Gorenstein hypotheis

But what about when R is not Q-Gorenstein.
One can define the test ideal. But not the multiplier ideal.
A fix involves “pairs”, (R,∆).
Here ∆ is an effective Q-divisor and KR + ∆ is Q-Cartier.

Q-Cartier means that there exists some n ∈ Z such that n∆
is integral (all denominators were cleared) and nKX + n∆ is
Cartier (ie, locally trivial in the divisor class group).

Then there is the multiplier ideal J (X ,∆) which measures
singularities of both X and ∆ (no canonical choice of ∆)

Karl Schwede



Motivation and the statement of the theorem
Proof methods

Further comments
Advertisement

The Q-Gorenstein hypotheis

But what about when R is not Q-Gorenstein.
One can define the test ideal. But not the multiplier ideal.
A fix involves “pairs”, (R,∆).
Here ∆ is an effective Q-divisor and KR + ∆ is Q-Cartier.

Q-Cartier means that there exists some n ∈ Z such that n∆
is integral (all denominators were cleared) and nKX + n∆ is
Cartier (ie, locally trivial in the divisor class group).

Then there is the multiplier ideal J (X ,∆) which measures
singularities of both X and ∆ (no canonical choice of ∆)

Karl Schwede



Motivation and the statement of the theorem
Proof methods

Further comments
Advertisement

The Q-Gorenstein hypotheis

But what about when R is not Q-Gorenstein.
One can define the test ideal. But not the multiplier ideal.
A fix involves “pairs”, (R,∆).
Here ∆ is an effective Q-divisor and KR + ∆ is Q-Cartier.

Q-Cartier means that there exists some n ∈ Z such that n∆
is integral (all denominators were cleared) and nKX + n∆ is
Cartier (ie, locally trivial in the divisor class group).

Then there is the multiplier ideal J (X ,∆) which measures
singularities of both X and ∆ (no canonical choice of ∆)

Karl Schwede



Motivation and the statement of the theorem
Proof methods

Further comments
Advertisement

The Q-Gorenstein hypotheis

But what about when R is not Q-Gorenstein.
One can define the test ideal. But not the multiplier ideal.
A fix involves “pairs”, (R,∆).
Here ∆ is an effective Q-divisor and KR + ∆ is Q-Cartier.

Q-Cartier means that there exists some n ∈ Z such that n∆
is integral (all denominators were cleared) and nKX + n∆ is
Cartier (ie, locally trivial in the divisor class group).

Then there is the multiplier ideal J (X ,∆) which measures
singularities of both X and ∆ (no canonical choice of ∆)

Karl Schwede



Motivation and the statement of the theorem
Proof methods

Further comments
Advertisement

The Q-Gorenstein hypotheis

But what about when R is not Q-Gorenstein.
One can define the test ideal. But not the multiplier ideal.
A fix involves “pairs”, (R,∆).
Here ∆ is an effective Q-divisor and KR + ∆ is Q-Cartier.

Q-Cartier means that there exists some n ∈ Z such that n∆
is integral (all denominators were cleared) and nKX + n∆ is
Cartier (ie, locally trivial in the divisor class group).

Then there is the multiplier ideal J (X ,∆) which measures
singularities of both X and ∆ (no canonical choice of ∆)

Karl Schwede



Motivation and the statement of the theorem
Proof methods

Further comments
Advertisement

The Q-Gorenstein hypotheis

But what about when R is not Q-Gorenstein.
One can define the test ideal. But not the multiplier ideal.
A fix involves “pairs”, (R,∆).
Here ∆ is an effective Q-divisor and KR + ∆ is Q-Cartier.

Q-Cartier means that there exists some n ∈ Z such that n∆
is integral (all denominators were cleared) and nKX + n∆ is
Cartier (ie, locally trivial in the divisor class group).

Then there is the multiplier ideal J (X ,∆) which measures
singularities of both X and ∆ (no canonical choice of ∆)

Karl Schwede



Motivation and the statement of the theorem
Proof methods

Further comments
Advertisement

de Fernex Hacon multiplier ideals

Assume X is NOT necessarily Q-Gorenstein.
de Fernex and Hacon consider all the possible ∆.
They define a multiplier ideal J (X ) even when X is not
necessarily Q-Gorenstein.

J (X ) =
∑

∆

J (X ,∆) = max
∆
J (X ,∆)

The same holds true for multiplier ideals involving a.
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Test ideals of pairs

Takagi introduced a notion of test ideals (and tight closure)
for pairs (R,∆).

Theorem (Takagi)

The multiplier ideal J (R,∆) becomes the test ideal τ(R,∆)
after reduction to characteristic p � 0.

Takagi’s (big) test ideal τ(R,∆) is defined even when
KR + ∆ is not Q-Cartier.
However, it is better behaved when KR + ∆ is Q-Cartier.

For example, τb(R,∆) = τ(R,∆) (the big test ideal = the
finitistic test ideal).
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The main theorem

Theorem
Given a normal F-finite domain R

τb(R) =
∑

∆

τb(R,∆)

Where the sum is over ∆ such that KR + ∆ is Q-Cartier.

The normality hypothesis can be removed, but then the
statement becomes more complicated.
One can also show that

τb(R, at ) =
∑

∆

τb(R,∆, at ).
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Q-divisors ∆ such that KR + ∆ is Q-Cartier

In fact, Q-divisors ∆ such that KR + ∆ is Q-Cartier (with
index not divisible by p > 0) are VERY NATURAL in
characteristic p.
In particular, locally, there is a bijection of sets

Effective Q-divisors ∆ so
that (pe − 1)(KX + ∆)

is Cartier

↔
{

Nonzero elements of
HomR(R1/pe

,R)

}/
∼

And if R is complete, then this is also equivalent to:{
Nonzero R{F e}-module

structures on ER

}/
∼
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The test ideal with respect to this alternate framework

With this framework assume that ∆ corresponds to
φ : R1/pe → R Then

Definition
The big test ideal τb(R,∆) is the unique smallest non-zero ideal
J of R such that φ(J1/pe

) ⊆ J.

Definition
The big test ideal τb(R) is the unique smallest non-zero ideal J
of R such that φ(J1/pe

) ⊆ J for all φ ∈ HomR(R1/pe
,R).

This makes the following equality plausible.

τb(R) =
∑

∆

τb(R,∆).
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Methods of the actual proof

One can turn ⊕e≥0 HomR(R1/pe
,R) into a

non-commutative algebra (multiplication is twisted
composition). It is not finitely generated in general.
Then the noetherian property of R implies that τb(R) is the
smallest non-zero ideal stable under a finite set of maps

{φi ∈ HomR(R1/pei ,R)}i=1,...,n

Set Γi to be the divisor corresponding to φi .
Careful work with test elements then allows one to show
that τb(R) is equal to a sum of τb(R,∆i1,...,im ) where the
∆i1,...,im are linear combinations of the Q-divisors Γi .
This completes the proof.
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Comments on the proof

The proof also allows one to show that

τb(R, at ) =
m∑

j=1

τb(R,∆j).

for some ∆j where KR + ∆j are Q-Cartier with index not
divisible by p.
So you can replace test ideals of “ideals” with test ideals of
“divisors”. The corresponding statement holds multiplier
ideals (and is very very useful).
The biggest problem is that the ∆ that are constructed
depend on the characteristic.
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Further questions

Question

Does the de Fernex-Hacon multiplier ideal J (R, at ) reduce to
the (big) test ideal τb(R, at ) for p � 0?

The main theorem above provides strong evidence that
this is the case.

Question
Is it true that there exists a divisor ∆ such that

τb(R, at ) = τb(R,∆, at )

To approach this question, one may need to work over an
infinite field.
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Frobenius splitting conference

There will be a conference in Ann Arbor Michigan on
Frobenius splitting and related techniques.

A Frobenius splitting is a map φ ∈ HomR(R1/pe
,R) such

that φ(1) = 1.

Date: May 17-22, 2010.
Organizing committee: M. Blickle, M. Brion, F. Enescu, S.
Kumar, M. Mustaţă, K. Schwede
There will be funding for graduate students and young
researchers.
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