

Characteristic 0 closure operations similar to tight closure

Karl Schwede

joint with Neil Epstein, Peter McDonald, Rebecca R.G.

(and with Linquan Ma, Peter McDonald, Rebecca R.G.)

JMM 2026, Washington D.C.

Tight closure?

Definition: [Hochster-Huneke]

Suppose R is a Noetherian F -finite domain of $\text{char } p$, $I \subseteq R$ ideal

$$I^* = \{x \in R \mid \exists c \neq 0, c^{1/p^e} x \in IR_{\text{perf}}, e \gg 0\}.$$

This is the *tight closure of I* .

It is the elements *almost* in

$$IR_{\text{perf}} = I\left(\bigcup_e R^{1/p^e}\right)$$

For some $0 \neq c \in R$

Many good properties...

Properties of tight closure

- Closure, pres. containments & $I \subseteq I^* = (I^*)^*$
- Colon capturing f_1, \dots, f_n s.o.p \Rightarrow
$$(f_1, \dots, f_i)^* : f_{i+1} \subseteq (f_1, \dots, f_i)^*.$$
- Detects singularities
 $I^* = I$ for parameter ideals
is close to *rational singularities*
- Finite maps $R \subseteq S$ finite then
 $I^* = (IS)^* \cap R$
- Briançon-Skoda Theorem
 $I = (f_1, \dots, f_n)$ then
$$\overline{I^{n+k-1}} \subseteq (I^k)^*$$
- But challenging to compute, doesn't commute with localization (Brenner-Monsky).

What about
other
characteristics?

- In characteristic p , plus closure has many same properties. $I^+ = IR^+ \cap R$
- In mixed characteristic, use big Cohen-Macaulay algebra extension-contraction (char free) or Heitmann's epf closure.
- In characteristic zero, do reduction mod p or Brenner's parasolid closure (char free).
- In characteristic zero, tight closure implies theorems also obtained via resolution of sings and Kodaira vanishing (dictionary).
- **Is there a resolution of sings closure?**

The idea

Instead of expanding contracting from R^+ , R_{perf} parasolid algebras, or big Cohen-Macaulay algebras we should extend and contract from

$$\mathbb{R}\Gamma(Y, \mathcal{O}_Y)$$

for $Y \rightarrow \text{Spec} R$ a resolution of singularities.

$\mathbb{R}\Gamma(Y, \mathcal{O}_Y)$ is

- **Independent of the choice of resolution**
- **A differential graded (cosimplicial) R -algebra**
- **A Cohen-Macaulay complex**

How to expand
and contract
from a DG
algebra?

OPTION #1

- *Hironaka closure (Hironaka proved res. of sing.)*

$$\begin{aligned} I^{\text{Hir}} &= \ker \left(R \rightarrow H_0(R/I \otimes^{\mathbb{L}} \mathbb{R}\Gamma(\mathcal{O}_Y)) \right) \\ &= \text{Ann}(R/I \otimes^{\mathbb{L}} \mathbb{R}\Gamma(\mathcal{O}_Y)) \end{aligned}$$

OPTION #2

- *Koszul-Hironaka closure*

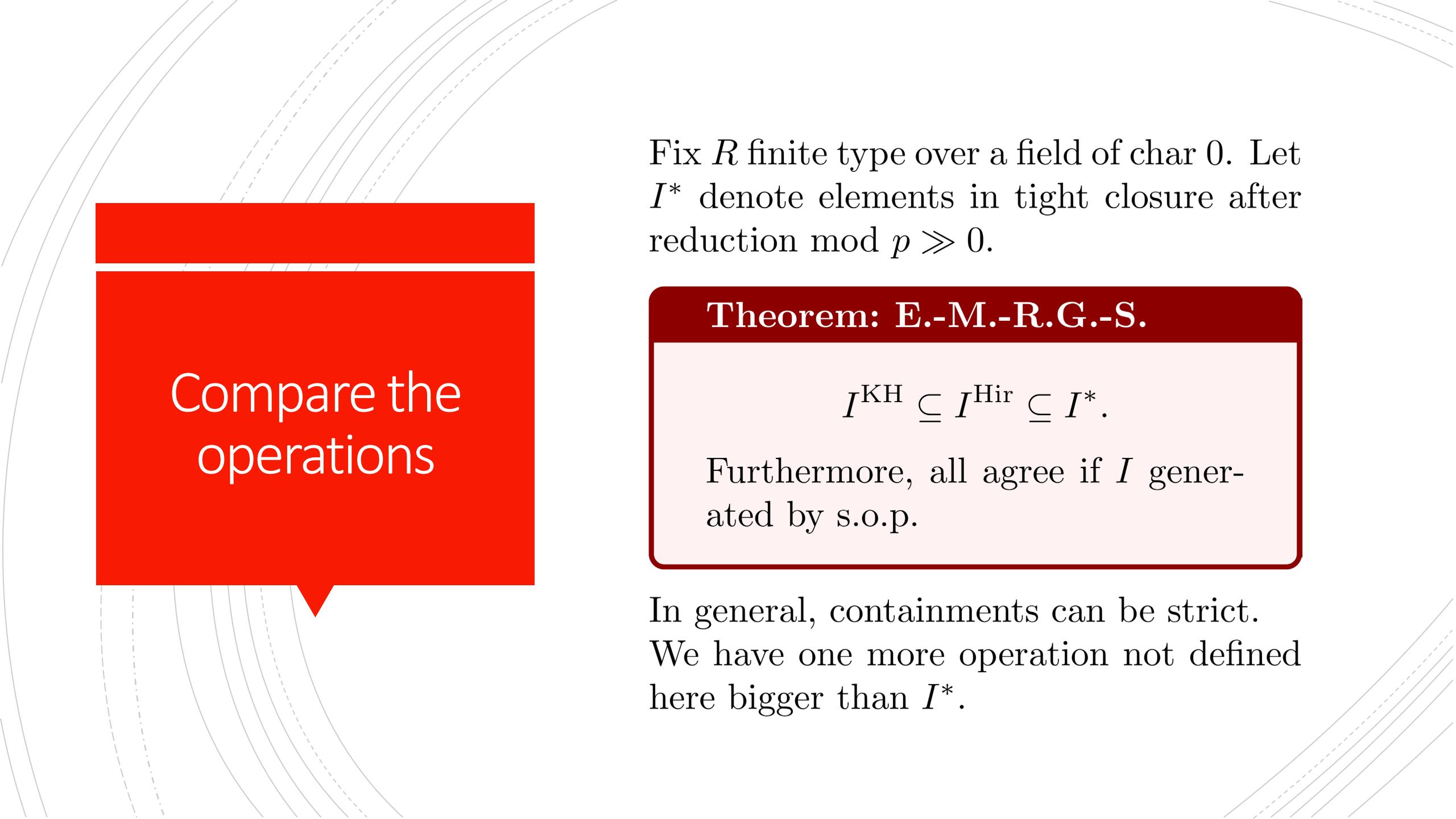
$$I = (f_1, \dots, f_n) = (\underline{f})$$

$$\begin{aligned} I^{\text{KH}} &= \ker \left(R \rightarrow H_0(\text{Kos}(\underline{f}) \otimes^{\mathbb{L}} \mathbb{R}\Gamma(\mathcal{O}_Y)) \right) \\ &= \text{Ann}(\text{Kos}(\underline{f}) \otimes^{\mathbb{L}} \mathbb{R}\Gamma(\mathcal{O}_Y)) \end{aligned}$$

Independent of choices.

	Tight closure	Hironaka	Koszul-Hironaka
Closure	YES	?	YES
Colon Capturing	YES	YES	YES
Detects singularities	YES	YES	YES
Finite Maps	YES	?	YES
Briançon-Skoda	YES	YES (M.-M.-R.G.-S.)	Weak version
Commutes localization?	NO	YES	YES
Computable?	Hard	For CM rings	YES

By computable, we really mean a computer can compute it. The Macaulay2 package associated with the paper really lets you experiment.



Compare the operations

Fix R finite type over a field of char 0. Let I^* denote elements in tight closure after reduction mod $p \gg 0$.

Theorem: E.-M.-R.G.-S.

$$I^{\text{KH}} \subseteq I^{\text{Hir}} \subseteq I^*$$

Furthermore, all agree if I generated by s.o.p.

In general, containments can be strict. We have one more operation not defined here bigger than I^* .

Briançon-Skoda
versions

Theorem: E.-M.-R.G.-S.

$I = (f_1, \dots, f_n)$ then

$$\overline{I^n} \subseteq I^{\text{KH}}$$

But $I^{n+1} \not\subseteq (I^2)^{\text{KH}}$ (via computer)

Theorem: M.-M.-R.G.-S.

$I = (f_1, \dots, f_n)$ then $\overline{I^{n+k-1}}$ maps to zero in

$$H_0\left(L^k(\underline{f}) \otimes^{\mathbb{L}} \mathbb{R}\Gamma(\mathcal{O}_Y)\right)$$

Where $L^k(\underline{f})$ is Buchsbaum-Eisenbud or Eagon-Northcott complex. Hence:

$$\overline{I^{n+k-1}} \subseteq (I^k)^{\text{Hir.}}$$

Surprise!

Those versions hold in a derived,
char. free, non-Noetherian
environment & more!

Theorem: M.-M.-R.G.-S.

$I = (f_1, \dots, f_n)$ let $X \rightarrow \text{Spec}R$ be blowup
of $\overline{I^{n+k-1}}$ with exceptional E . Then

$$\mathbb{R}\Gamma(\mathcal{O}_X(-E)) \rightarrow L^k(\underline{f}) \otimes^{\mathbb{L}} \mathbb{R}\Gamma(\mathcal{O}_X)$$

is zero in derived category. Where $L^k(\underline{f})$
is Buchsbaum-Eisenbud or Eagon-Northcott
complex^a.

Taking 0th homology, $\overline{I^{n+k-1}} \mapsto 0$ in

$$H_0\left(L^k(\underline{f}) \otimes^{\mathbb{L}} \mathbb{R}\Gamma(\mathcal{O}_X)\right)$$

^aagrees with Koszul if $k = 1$

Expanation:
Instead of
blowup of I

If $Y \rightarrow \text{Spec } R$ is a:

- resolution of singularities, or
- regular alteration, or
- pseudo-rational alteration, or
- regular alteration hypercover:

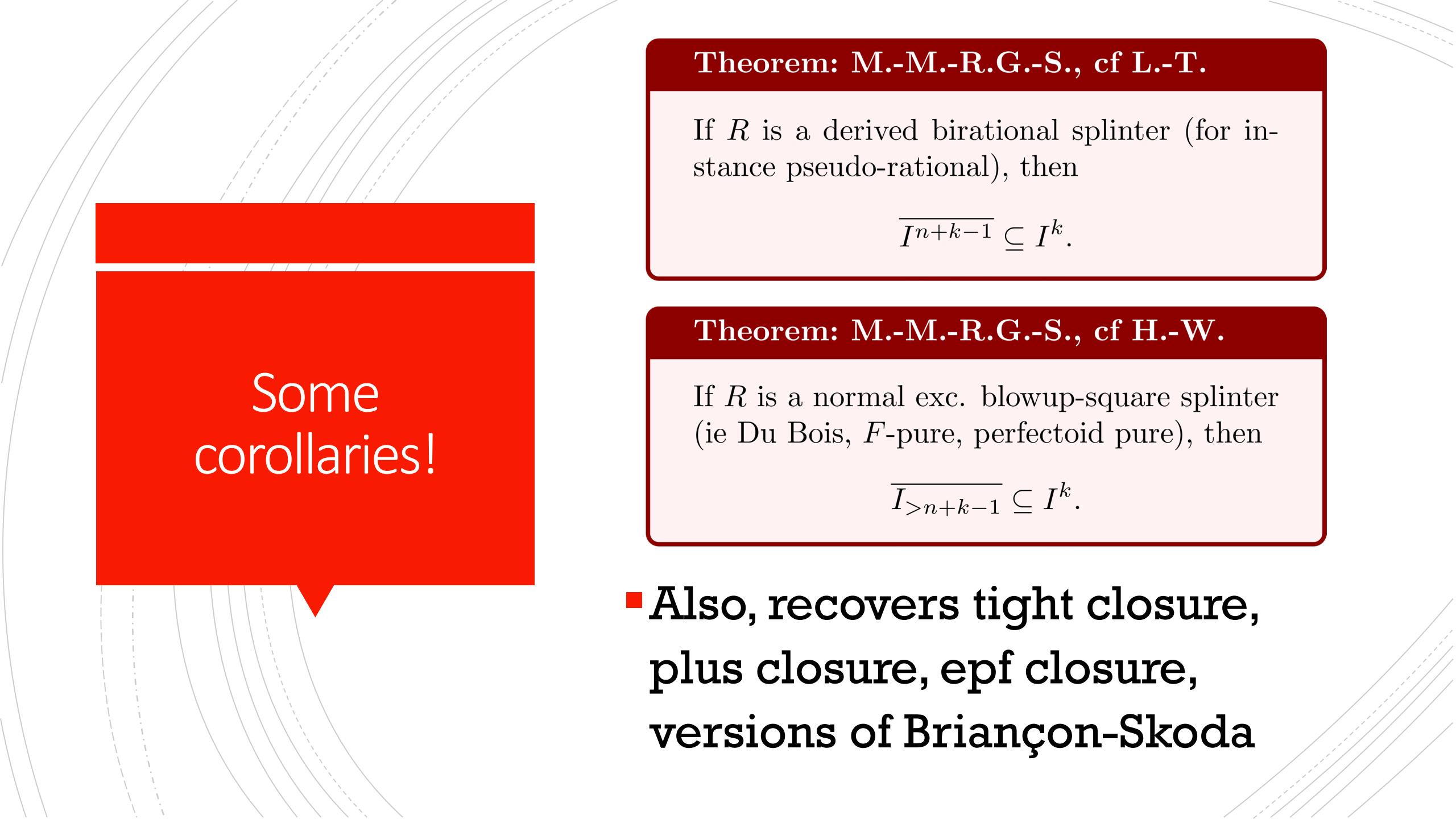
Then there are natural

$$R \rightarrow L^k(\underline{f}) \rightarrow R/I^k,$$

$$R \rightarrow \mathbb{R}\Gamma(\mathcal{O}_X) \rightarrow \mathbb{R}\Gamma(\mathcal{O}_Y).$$

Get closure Briançon-Skoda indep. of I (any char)

$$\overline{I^{n+k-1}} \mapsto 0 \in H_0(L^k(\underline{f}) \otimes^{\mathbb{L}} \mathbb{R}\Gamma(\mathcal{O}_X)) \rightarrow H_0(R/I^k \otimes^{\mathbb{L}} \mathbb{R}\Gamma(\mathcal{O}_Y)).$$



Some
corollaries!

Theorem: M.-M.-R.G.-S., cf L.-T.

If R is a derived birational splinter (for instance pseudo-rational), then

$$\overline{I^{n+k-1}} \subseteq I^k.$$

Theorem: M.-M.-R.G.-S., cf H.-W.

If R is a normal exc. blowup-square splinter (ie Du Bois, F -pure, perfectoid pure), then

$$\overline{I_{>n+k-1}} \subseteq I^k.$$

- **Also, recovers tight closure, plus closure, epf closure, versions of Briançon-Skoda**

More Corollaries

Theorem: M.-M.-R.G.-S., cf Huneke

If R is reduced, finite dim. quasi-exc., then there exists d such that $\forall k \geq 1, \forall I$,

$$\overline{I^{d+k}} \subseteq I^k.$$

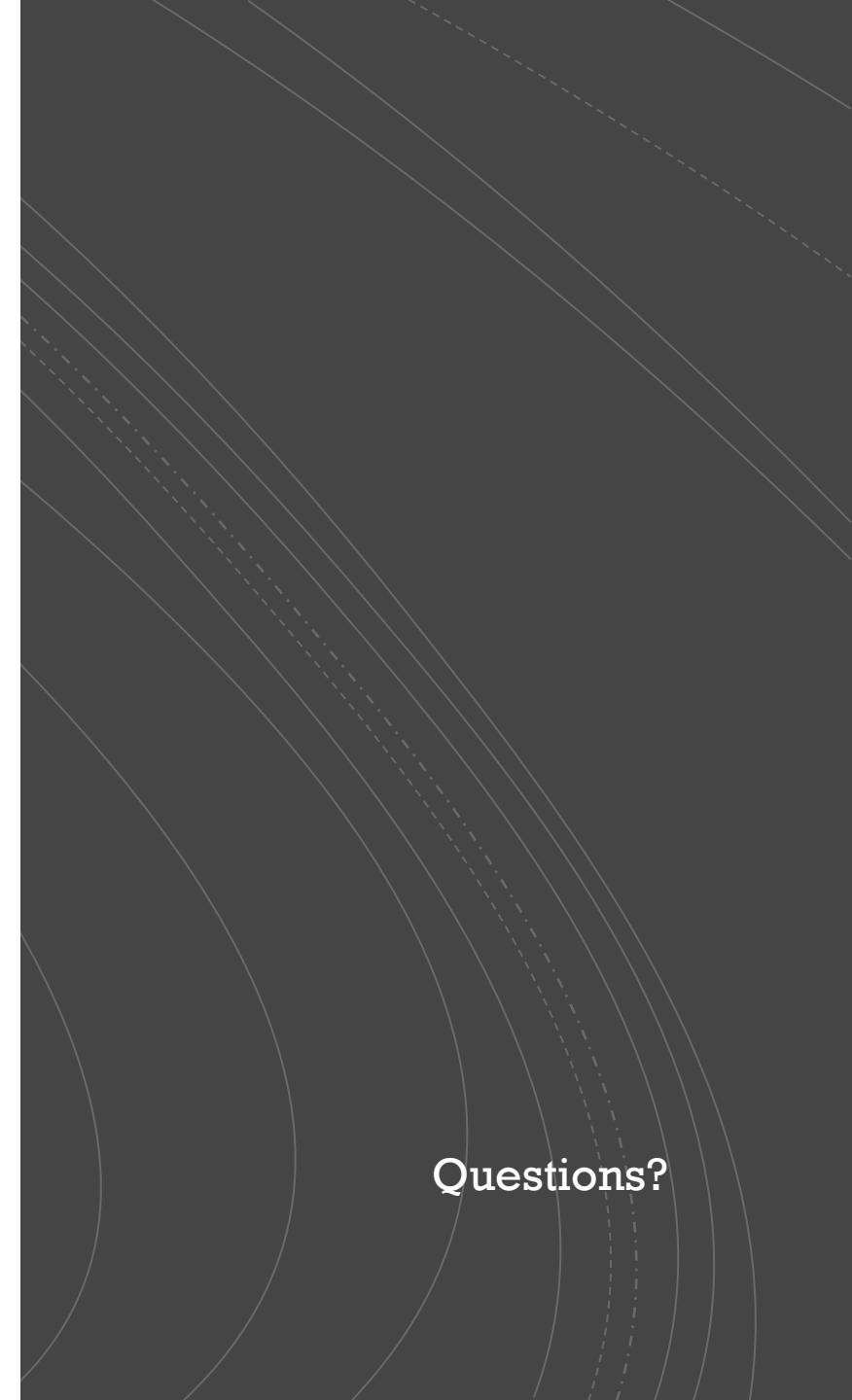
- Holds since regular alteration hypercover is good enough, and those exist by Gabber.
- We also get uniform Artin-Rees (we proved missing piece, then used Huneke).

Theorem: M.-M.-R.G.-S., cf Huneke

If R is finite dim. quasi-exc. $N \subseteq M$ f.g., $\exists \ell$ such that $\forall n \geq \ell, \forall I$,

$$I^n M \cap N \subseteq I^{n-\ell} M.$$

Thank you for
listening!



Questions?