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Affine algebraic varieties

What is a complex affine algebraic variety?
It is a subset of Cn which is the vanishing set of some
collection of polynomial equations.
In the examples of this talk, I’ll only consider varieties
defined by a single equation (hypersurfaces).

For example, in C2 one might consider y − x2 or y2 − x3 or
y2 − x2(x − 1).

or or
Of course, these are two dimensional objects really, we
only plotted their real points.
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Higher dimensional examples I

In C3 one might consider a quadric cone, x2 + y2 − z2.

Or a cone over a cubic, y2z − x(x − z)(x + z).
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Generalizations

These examples are not compact (they are affine). Often
one studies “projective” algebraic varieties (which are
compact).

Projective algebraic varieties are simply several affine
algebraic varieties glued together (on large open patches)
in such a way that they embed algebraically as a closed
subset of Pn

C.
We also work over other fields besides C. In particular,
sometimes we work over fields of characteristic p > 0.

There won’t be any positive characteristic drawings.
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Relation with algebra

If one is studying a complex affine variety X defined by an
equation f (x1, . . . , xn) = 0, the ring

R = C[x1, . . . , xn]/(f (x1, . . . , xn))

carries the same information as X (although it doesn’t
record the embedding X ⊆ Cn).
The points of the variety correspond to the maximal ideals
of the ring R.
Therefore, one can study the algebraic variety X by
studying the ring R.
This is particularly useful when working over fields besides
C.
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This talk is about singularities... so

What is a singularity?
On a complex variety, a point Q is smooth if “very locally”,
that point looks the same as a point of Cd .
A point is singular if it is not smooth.
Alternately, if X is defined by a single equation
f (x1, . . . , xn) = 0, then a point Q is singular if f (Q) = 0 and
∂f/∂xi(Q) = 0 for each i = 1, . . . ,n.

This description works also when working over other fields.
One can do something similar for non-hypersurfaces.

All the examples we’ve looked at so far (except the
parabola) have an “isolated singularity” at the origin.
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Why study singularities? I

Perhaps you are only interested in smooth varieties?
Singularities show up as limits of smooth varieties.

This happens particularly when “compactifying moduli
spaces”

(moduli spaces are algebraic varieties whose points
parameterize something. For example, points can
correspond to isomorphism classes of certain varieties).
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Why study singularities? II

If you want to classify algebraic varieties, sometimes you
need to replace a variety X with a simpler but closely
related variety Y .
One way in which this is done is by contracting (compact)
subsets of varieties to points.

to
This happens in the minimal model program.
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Why study singularities? III

Of course, sometimes you simply want to generalize a
theorem to as broad a setting as possible, and so you ask
“What property of smooth varieties allows me to prove this
theorem?”
Once you can answer this question, you have identified a
class of singularities.
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What is a resolution of singularities?

Suppose you are given a singular variety X .
A resolution of singularities is a map of algebraic varieties
π : X̃ → X that satisfies the following properties:

X̃ is smooth.
π is “birational” (this means it is an isomorphism outside of
a small closed subset of X , usually the singular locus of X )
π is “proper” (in particular, this implies that the pre-image of
a point is compact)

Because of this, X̃ is usually not affine, even when X is.

We also usually require that the pre-image of the singular
locus looks like “coordinate hyperplanes”, sufficiently
locally.

Resolutions of singularities always exist in characteristic
zero
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Why resolve singularities?

A resolution of singularities takes your variety X and
constructs a “smooth variety” X̃ that is very closely related
to X .

X̃ and X are “birational”.

The “properness” of the resolution implies that if X was
compact, then X̃ is also compact.
So sometimes if you know a theorem about smooth
varieties, you can prove the same theorem about singular
varieties just by using this resolution.
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How do you resolve singularities?

You perform several blow-ups.
A blow-up is an “un-contraction” of a closed subset.
It is exactly the opposite operation of the example from
before.

to

Theorem (Hironaka)
In characteristic zero, if you do enough blow-ups at “smooth
centers”, in the right order, you will construct a resolution of
singularities

Karl Schwede
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Example with curves

We will blow-up points in C2 and see what it does to
curves.
A blow-up at a point on C2 turns every different tangent
direction (discounting sign) at Q into its own point. It
replaces Q by a copy of P1

C = “The Riemann sphere”.
What happens to curves on the plane?
This separation of tangent directions means that nodes
become separated.

blown-up becomes
The black line is the P1

C that will be contracted back to the
origin in C2.
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Additional discussion of blow-ups

A similar thing happens with the quadric cones in C3.

to
When we do the blow-up at the origin, all the different
tangent directions get separated.
But this just replaces the singular point of the cone with the
distinct tangent directions that go into it, in this case with a
circle.

at least its real points look like a circle.
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How can we classify singularities with resolutions?

All the examples we’ve seen so far can be resolved by one
blow-up at a single point. However, there are many
singularities that require more work to resolve.
One option then is to study the (minimal) blow-ups needed
to resolve the singularities.

You can do something like this for surfaces (surface = 2
complex dimensions).

However, in higher dimensions this becomes difficult (and
also much harder to visualize). There are also different
“minimal” ways to resolve the same singularity.
You can often compare the (geometric / algebraic /
homological) properties of the resolution X̃ with those
same (geometric / algebraic / homological) properties of X .
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Singularities of the minimal model program I

The goal of the minimal model program is to take a
“birational equivalence class” of varieties and find a good
minimal representative of that class. In particular, one
contracts certain closed subvarieties in order to get new
varieties with “mild” singularities.
What does mild mean? One compares the sheaf of “top
dimensional differentials” on X (naively extended over the
singular locus) with the top differentials of its resolution X̃ .
Singularities classified this way behave well with respect to
the contractions of the minimal model program.
Certain important theorems (such as the Kodaira vanishing
theorem) also hold on varieties with these singularities.
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Singularities of the minimal model program II

Recall we are defining singularities by looking at how the
sheaf of top differential forms on a resolution X̃ behaves
compared to the sheaf of top differentials on X .
By looking at the numerics of these comparisons, one can
write down definitions of terminal, canonical, log terminal,
log canonical, rational and Du Bois singularities.
Actually, Du Bois singularities were originally defined using
other methods (Hodge Theory), although we now have the
following theorem.

Theorem (Kovács, –, Smith)

Suppose that X is normal and Cohen-Macaulay and π : X̃ → X
is a (log) resolution of X with exceptional set E. Then X has Du
Bois singularities if and only if π∗ωX̃ (E) = ωX .
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Singularities of the minimal model program III

The following diagram summarizes implications between
the singularities of the minimal model program.

Terminal +3 Canonical +3 Log Terminal

��

+3 Rational

+ Gor.
ow

��
Log Canonical +3 Du Bois

+ Gor. & normal

ck

Not all of the implications in the above diagram are trivial,
see the work of Elkik, Ishii, Kollár, Kovács, Saito, –, Smith,
Steenbrink and others.
Multiplier ideals, adjoint ideals, log canonical thresholds
and log canonical centers are also measures of
singularities that fit into the same framework.
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Our examples

The quadric cone we discussed is canonical but not
terminal.
The cubic cone is log canonical but not rational.
The nodal curve is only Du Bois.
The cuspidal curve is not even Du Bois.
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Analytic description of singularities

There are analytic ways to describe several of the
singularities of the minimal model program as well.
For example, consider a variety X defined by an equation
f (x1, . . . , xn) = 0 in Cn.
Also assume that f is irreducible.
Then X is (semi) log canonical near the origin 0 if and only
if

1
|f (x1, . . . , xn)|2c is integrable near 0 for all c < 1.

The multiplier ideal can also be described in a similar way.
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What’s different about characteristic p?

Suppose that k is an algebraically closed field of
characteristic p.
One can still make sense of varieties defined over k .
Singularities can even still be detected using partial
derivatives.
Resolution of singularities is still an open question at this
point.

Although there is hope that this might be solved to
everyone’s satisfaction shortly.

However, some technical (vanishing) theorems used to
prove properties of singularities are known to be false in
characteristic p.
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Study the rings

Various people have been studying properties of rings in
characteristic p > 0 for a long time.
Algebraic geometers and commutative algebraists have
classified singularities of these rings by studying the action
of Frobenius.

The Frobenius map on a ring R is the map F : R → R that
sends x ∈ R to xp (where p is the characteristic of R).

Frobenius is a ring homomorphism since
(x + y)p = xp + yp.
If R is reduced (there are no elements 0 6= x ∈ R such that
xp = 0), then the Frobenius map can be thought of as the
inclusion:

Rp ⊂ R or the inclusion R ⊂ R1/p.
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Notation for Frobenius

We want to explore the behavior of Frobenius on “nice
rings”?
We want to view R as an R-module via the action of
Frobenius.
People often use F∗R to denote the R-module which is
equal to R as an additive group, and where the R-module
action is given by r .x = rpx .

One can also think of F∗R as R1/p.
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Smooth points and the action of Frobenius

Consider the ring R = k [x ] (polynomials in a single
variable).

If k = C, then the ring R would correspond to the variety C
(which is very smooth).

It’s easy to see that F∗R is free of rank p (with generators
1, x , . . . , xp−1).
It turns out that any polynomial ring is free when viewed as
a module via the action of Frobenius.
In fact, there is the following theorem:

Theorem (Kunz)
A local domain R of characteristic p is regular (ie, non-singular)
if and only if F∗R is flat as an R-module.

In our context, this implies that R is smooth if and only if
F∗R is locally free.
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Singularities defined by Frobenius

How can we use Frobenius to classify singularities?

Definition
A ring R is said to be F-pure (or F -split) if there exists a
surjective map of R-modules φ : F∗R → R.

If F∗R is free as an R-module, it is not hard to see that the
Frobenius map splits.
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An aside on Frobenius split varieties

If X is smooth and projective one can still restrict to open
sets, corresponding to rings R, which are Frobenius split.
Therefore, every smooth variety is “locally” Frobenius split.
However, the the various splittings φ are often not
compatible.
Being globally Frobenius split is much more restrictive than
being locally Frobenius split.
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More singularities defined by Frobenius

Other closely related classes of rings include:
(strongly) F -regular, F-injective, and F-rational.

F -regular

��

+3 F -rational
+ Gor.v~

��
F -pure +3 F -injective

+ Gor.

bj

Test ideals (from tight closure theory), F -pure thresholds,
and F -pure centers also fit into this framework.
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Examples of singularities defined by Frobenius

The ring corresponding to the quadric cone
R = k [x , y , z]/(x2 + y2 − z2) is F -regular (except in
characteristic 2).
The ring corresponding to the cubic cone
R = k [x , y , z]/(x3 + y3 + z3) is F -pure if and only if
p ≡ 1 mod 3. It is never F -rational.
The ring corresponding to the node is F -pure but not
F -rational.
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Reduction to characteristic p > 0

Suppose you have a complex affine variety X defined by
an equation f (x1, . . . , xn) = 0.
If the coefficients of f are integers, then one can also view
this as a variety in characteristic p > 0.

Squint hard, and study the ring Fp[x1, . . . , xn]/(f ) instead of
the ring C[x1, . . . , xn]/(f )

One says that X has dense F-pure type if for infinitely
many p, the ring Fp[x1, . . . , xn]/(f ) is F -pure.

One can similarly define dense F-regular type, etc.

If the coefficients of f are not integers, one can do
something similar.
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Relation between the singularities

Since about 1980, people have been aware of connections
between singularities defined by the action of Frobenius
and singularities defined by a resolution of singularities.
Although the various classes of singularities were
introduced independently.
After the introduction of tight closure by Hochster and
Huneke, people began to make the correspondence
precise. For example,

Theorem (Smith, Hara/ Mehta-Srinivas)
X has rational singularities if and only if X has dense F-rational
type.
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More relations between the singularities

Many other people have since contributed to this
dictionary: Fedder, Hara, Mehta, Mustaţă, –, Smith,
Srinivas, Takagi, Watanabe, Yoshida and others.

Theorem (–)
If X has dense F-injective type then X has Du Bois
singularities.

Theorem (–)
If W ⊆ X is a log canonical center, then after reduction to
characteristic p � 0, Wp ⊆ Xp is a F-pure center.

Centers of F -purity are very closely related to compatibly
Frobenius split subvarieties (which show up often in
representation theory).
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The diagram

Terminal

��
Canonical

��

u}
+ Gor.

Log Terminal
qy %-

+3

��

Rational

��

rz $,
F -Regular

��

+ Gor.

+3

��

F -Rational

��
Log Canonical +3

em
+normal

W_

+ Gor. & normal

Du Boisdl F -Pure +3
V^

+ Gor.

F -Injective

Multiplier ideals ks +3 Test ideals

LC Centers +3 F -pure centers
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Remarks on the diagram

It is unknown whether there are F -analogues of canonical
or terminal singularities.
It is conjectured that log canonical singularities are of
dense F -pure type, but this is (very) open.
Of course, this diagram has been used to inspire questions
in both contexts. It has also been used to answer
questions.
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Multiplier ideals

Suppose X is an affine variety and a is an ideal (on the
corresponding ring).
One then can define the multiplier ideal J (X , at) where
t > 0 is a real number.
As one increases t , these become smaller ideals.

J (X , at1) ) J (X , at2) ) J (X , at3) ) . . .

They change at a discrete set of rational numbers ti , called
jumping numbers.

At least when X is normal and Q-Gorenstein.
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At least when X is normal and Q-Gorenstein.
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Frobenius jumping numbers

But the test ideal, τ(X , at) is an analogue of the multiplier
ideal.
One can ask whether the same “jumping” behavior holds
(for a fixed a).

Theorem (Blickle, Mustaţă, Smith)

The set of “F -jumping numbers” for a are discrete and rational
when X is smooth.

Also see [Monsky, Hara] and [Katzman, Lyubeznik, Zhang].

Theorem (–, Takagi, Zhang)

The set of “F -jumping numbers” for a are discrete and rational
when X is normal and Q-Gorenstein with index not divisible by
p.

Karl Schwede



Singularities on algebraic varieties
Types of singularities in characteristic zero

Singularities in characteristic p > 0

Definitions
Characteristic 0 vs characteristic p > 0 singularities

Frobenius jumping numbers

But the test ideal, τ(X , at) is an analogue of the multiplier
ideal.
One can ask whether the same “jumping” behavior holds
(for a fixed a).

Theorem (Blickle, Mustaţă, Smith)
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