Discreteness and rationality of *F*-jumping numbers on rings with singularities

Karl Schwede¹, Wenliang Zhang¹, Shunsuke Takagi²

¹Department of Mathematics University of Michigan ²Department of Mathematics Kyushu University

Sectional AMS Meeting – Spring 2009

< □ > < 同 > < Ξ

Outline

- Multiplier ideals
- Test ideals

Discreteness and rationality on rings with singularities

< □ > < 同 > < 臣

What about the non-(log)-Q-Gorenstein case?

Discreteness and rationality on rings with singularities What about the non-(log)-Q-Gorenstein case?

Outline

- Multiplier ideals
- Test ideals
- 2 Discreteness and rationality on rings with singularities

ヘロト ヘヨト ヘヨト

3 What about the non-(log)-Q-Gorenstein case?

Multiplier ideals

< ロ > < 同 > < 三 >

Discreteness and rationality on rings with singularities What about the non-(log)-Q-Gorenstein case?

Outline

- Test ideals
- 2 Discreteness and rationality on rings with singularities
- 3 What about the non-(log)-Q-Gorenstein case?

Multiplier ideals Test ideals

Multiplier ideals on singular varieties

• Suppose that $X = \operatorname{Spec} R$ is normal (of finite type $/\mathbb{C}$).

• We let Δ be an effective \mathbb{Q} -divisor.

- A Q-divisor is a linear combination of subvarieties of codimension 1 such with positive rational coefficients.
- We also assume that K_X + Δ is Q-Cartier. Here K_X is a divisor in the whose divisor class corresponds to ω_X.
 - Q-Cartier means that there exists some n ∈ Z such that n∆ is integral (all denominators were cleared) and nK_X + n∆ is Cartier (ie, locally trivial in the divisor class group).
 - When X is Q-Gorenstein (that means nK_X is Cartier, locally $\omega_X^{(n)} \cong R$, for some n), we can choose $\Delta = 0$.
- Then for any ideal a on X, the setting of a triple (X, △, a^t) (for t ∈ ℝ_{≥0}) is the natural context for considering multiplier ideals from the point of view of the "MMP".

Multiplier ideals Test ideals

Multiplier ideals on singular varieties

- Suppose that $X = \operatorname{Spec} R$ is normal (of finite type $/\mathbb{C}$).
- We let △ be an effective Q-divisor.
 - A Q-divisor is a linear combination of subvarieties of codimension 1 such with positive rational coefficients.
- We also assume that K_X + Δ is Q-Cartier. Here K_X is a divisor in the whose divisor class corresponds to ω_X.
 - Q-Cartier means that there exists some n ∈ Z such that n∆ is integral (all denominators were cleared) and nK_X + n∆ is Cartier (ie, locally trivial in the divisor class group).
 - When X is Q-Gorenstein (that means nK_X is Cartier, locally $\omega_X^{(n)} \cong R$, for some *n*), we can choose $\Delta = 0$.
- Then for any ideal a on X, the setting of a triple (X, △, a^t) (for t ∈ ℝ_{≥0}) is the natural context for considering multiplier ideals from the point of view of the "MMP".

Multiplier ideals Test ideals

Multiplier ideals on singular varieties

- Suppose that $X = \operatorname{Spec} R$ is normal (of finite type $/\mathbb{C}$).
- We let ∆ be an effective Q-divisor.
 - A Q-divisor is a linear combination of subvarieties of codimension 1 such with positive rational coefficients.
- We also assume that K_X + Δ is Q-Cartier. Here K_X is a divisor in the whose divisor class corresponds to ω_X.
 - Q-Cartier means that there exists some n ∈ Z such that n∆ is integral (all denominators were cleared) and nK_X + n∆ is Cartier (ie, locally trivial in the divisor class group).
 - When X is Q-Gorenstein (that means nK_X is Cartier, locally $\omega_X^{(n)} \cong R$, for some *n*), we can choose $\Delta = 0$.
- Then for any ideal a on X, the setting of a triple (X, △, a^t) (for t ∈ ℝ_{≥0}) is the natural context for considering multiplier ideals from the point of view of the "MMP".

Multiplier ideals Test ideals

Multiplier ideals on singular varieties

- Suppose that $X = \operatorname{Spec} R$ is normal (of finite type $/\mathbb{C}$).
- We let ∆ be an effective Q-divisor.
 - A Q-divisor is a linear combination of subvarieties of codimension 1 such with positive rational coefficients.
- We also assume that K_X + Δ is Q-Cartier. Here K_X is a divisor in the whose divisor class corresponds to ω_X.
 - Q-Cartier means that there exists some n ∈ Z such that n∆ is integral (all denominators were cleared) and nK_X + n∆ is Cartier (ie, locally trivial in the divisor class group).
 - When X is Q-Gorenstein (that means nK_X is Cartier, locally $\omega_X^{(n)} \cong R$, for some *n*), we can choose $\Delta = 0$.
- Then for any ideal a on X, the setting of a triple (X, △, a^t) (for t ∈ ℝ_{≥0}) is the natural context for considering multiplier ideals from the point of view of the "MMP".

Multiplier ideals Test ideals

Multiplier ideals on singular varieties

- Suppose that $X = \operatorname{Spec} R$ is normal (of finite type $/\mathbb{C}$).
- We let ∆ be an effective Q-divisor.
 - A Q-divisor is a linear combination of subvarieties of codimension 1 such with positive rational coefficients.
- We also assume that K_X + Δ is Q-Cartier. Here K_X is a divisor in the whose divisor class corresponds to ω_X.
 - \mathbb{Q} -*Cartier* means that there exists some $n \in \mathbb{Z}$ such that $n\Delta$ is integral (all denominators were cleared) and $nK_X + n\Delta$ is Cartier (ie, locally trivial in the divisor class group).
 - When X is Q-Gorenstein (that means nK_X is Cartier, locally $\omega_X^{(n)} \cong R$, for some *n*), we can choose $\Delta = 0$.

 Then for any ideal a on X, the setting of a triple (X, Δ, a^t) (for t ∈ ℝ_{≥0}) is the natural context for considering multiplier ideals from the point of view of the "MMP".

Multiplier ideals Test ideals

Multiplier ideals on singular varieties

- Suppose that $X = \operatorname{Spec} R$ is normal (of finite type $/\mathbb{C}$).
- We let ∆ be an effective Q-divisor.
 - A Q-divisor is a linear combination of subvarieties of codimension 1 such with positive rational coefficients.
- We also assume that K_X + Δ is Q-Cartier. Here K_X is a divisor in the whose divisor class corresponds to ω_X.
 - \mathbb{Q} -*Cartier* means that there exists some $n \in \mathbb{Z}$ such that $n\Delta$ is integral (all denominators were cleared) and $nK_X + n\Delta$ is Cartier (ie, locally trivial in the divisor class group).
 - When X is Q-Gorenstein (that means nK_X is Cartier, locally $\omega_X^{(n)} \cong R$, for some *n*), we can choose $\Delta = 0$.

ヘロト ヘヨト ヘヨト

 Then for any ideal a on X, the setting of a triple (X, △, a^t) (for t ∈ ℝ_{≥0}) is the natural context for considering multiplier ideals from the point of view of the "MMP".

Multiplier ideals Test ideals

Multiplier ideals on singular varieties

- Suppose that $X = \operatorname{Spec} R$ is normal (of finite type $/\mathbb{C}$).
- We let Δ be an effective \mathbb{Q} -divisor.
 - A Q-divisor is a linear combination of subvarieties of codimension 1 such with positive rational coefficients.
- We also assume that K_X + Δ is Q-Cartier. Here K_X is a divisor in the whose divisor class corresponds to ω_X.
 - Q-Cartier means that there exists some n ∈ Z such that n∆ is integral (all denominators were cleared) and nK_X + n∆ is Cartier (ie, locally trivial in the divisor class group).
 - When X is Q-Gorenstein (that means nK_X is Cartier, locally $\omega_X^{(n)} \cong R$, for some *n*), we can choose $\Delta = 0$.

ヘロト 人間 ト 人 ヨ ト 人

 Then for any ideal a on X, the setting of a triple (X, Δ, a^t) (for t ∈ ℝ_{≥0}) is the natural context for considering multiplier ideals from the point of view of the "MMP".

Discreteness and rationality on rings with singularities What about the non-(log)-Q-Gorenstein case? Multiplier ideals Test ideals

The definition of multiplier ideals

- Take a log resolution $\pi : \widetilde{X} \to X$ with $\mathfrak{aO}_{\widetilde{X}} = \mathcal{O}_{\widetilde{X}}(-E)$.
 - I'm not going to give a precise definition here.
- Then (using this Q-Cartier notion), we can define the multiplier ideal *J*(*X*, Δ, α^t) to be

$$\pi_*\mathcal{O}_{\widetilde{X}}(\lceil K_{\widetilde{X}}-\pi^*(K_X+\Delta)-tE\rceil).$$

- The round-up just rounds up the coefficients of the Q-divisors.
- Another way to think of this is that there are a finite number of discrete valuations v_i (of Frac R) and integers m_i and n_i > 0 such that

$$\mathcal{J}(X, \Delta, \mathfrak{a}^t) = \{r \in R | v_i(r) \ge \lfloor n_i t + m_i \rfloor\}$$

Discreteness and rationality on rings with singularities What about the non-(log)-Q-Gorenstein case? Multiplier ideals Test ideals

The definition of multiplier ideals

- Take a log resolution π : X̃ → X with αO_{X̃} = O_{X̃}(−E).
 I'm not going to give a precise definition here.
- Then (using this Q-Cartier notion), we can define the multiplier ideal *J*(*X*, Δ, α^t) to be

$$\pi_*\mathcal{O}_{\widetilde{X}}(\lceil K_{\widetilde{X}}-\pi^*(K_X+\Delta)-tE\rceil).$$

- The round-up just rounds up the coefficients of the Q-divisors.
- Another way to think of this is that there are a finite number of discrete valuations v_i (of Frac R) and integers m_i and n_i > 0 such that

$$\mathcal{J}(X, \Delta, \mathfrak{a}^t) = \{r \in R | v_i(r) \ge \lfloor n_i t + m_i \rfloor\}$$

Discreteness and rationality on rings with singularities What about the non-(log)-Q-Gorenstein case? Multiplier ideals Test ideals

The definition of multiplier ideals

- Take a log resolution $\pi : \widetilde{X} \to X$ with $\mathfrak{aO}_{\widetilde{X}} = \mathcal{O}_{\widetilde{X}}(-E)$.
 - I'm not going to give a precise definition here.
- Then (using this Q-Cartier notion), we can define the multiplier ideal *J*(*X*, Δ, α^t) to be

$$\pi_*\mathcal{O}_{\widetilde{X}}(\lceil K_{\widetilde{X}} - \pi^*(K_X + \Delta) - tE \rceil).$$

- The round-up just rounds up the coefficients of the $\ensuremath{\mathbb{Q}}\xspace$ -divisors.
- Another way to think of this is that there are a finite number of discrete valuations v_i (of Frac R) and integers m_i and n_i > 0 such that

$$\mathcal{J}(X,\Delta,\mathfrak{a}^t) = \{r \in R | v_i(r) \geq \lfloor n_i t + m_i \rfloor\}$$

Discreteness and rationality on rings with singularities What about the non-(log)-Q-Gorenstein case? Multiplier ideals Test ideals

The definition of multiplier ideals

- Take a log resolution $\pi : \widetilde{X} \to X$ with $\mathfrak{aO}_{\widetilde{X}} = \mathcal{O}_{\widetilde{X}}(-E)$.
 - I'm not going to give a precise definition here.
- Then (using this Q-Cartier notion), we can define the multiplier ideal *J*(*X*, Δ, α^t) to be

$$\pi_*\mathcal{O}_{\widetilde{X}}(\lceil K_{\widetilde{X}} - \pi^*(K_X + \Delta) - tE\rceil).$$

- The round-up just rounds up the coefficients of the $\ensuremath{\mathbb{Q}}\xspace$ -divisors.
- Another way to think of this is that there are a finite number of discrete valuations v_i (of Frac R) and integers m_i and n_i > 0 such that

$$\mathcal{J}(X, \Delta, \mathfrak{a}^t) = \{r \in R | v_i(r) \ge \lfloor n_i t + m_i \rfloor\}$$

Discreteness and rationality on rings with singularities What about the non-(log)-Q-Gorenstein case? Multiplier ideals Test ideals

The definition of multiplier ideals

- Take a log resolution $\pi : \widetilde{X} \to X$ with $\mathfrak{aO}_{\widetilde{X}} = \mathcal{O}_{\widetilde{X}}(-E)$.
 - I'm not going to give a precise definition here.
- Then (using this Q-Cartier notion), we can define the multiplier ideal *J*(*X*, Δ, α^t) to be

$$\pi_*\mathcal{O}_{\widetilde{X}}(\lceil K_{\widetilde{X}} - \pi^*(K_X + \Delta) - tE \rceil).$$

- The round-up just rounds up the coefficients of the Q-divisors.
- Another way to think of this is that there are a finite number of discrete valuations v_i (of Frac R) and integers m_i and n_i > 0 such that

$$\mathcal{J}(X, \Delta, \mathfrak{a}^t) = \{r \in R | v_i(r) \ge \lfloor n_i t + m_i \rfloor\}$$

Discreteness and rationality on rings with singularities What about the non-(log)-Q-Gorenstein case? Multiplier ideals Test ideals

The definition of multiplier ideals

- Take a log resolution $\pi : \widetilde{X} \to X$ with $\mathfrak{aO}_{\widetilde{X}} = \mathcal{O}_{\widetilde{X}}(-E)$.
 - I'm not going to give a precise definition here.
- Then (using this Q-Cartier notion), we can define the multiplier ideal *J*(*X*, Δ, a^t) to be

$$\pi_*\mathcal{O}_{\widetilde{X}}(\lceil K_{\widetilde{X}} - \pi^*(K_X + \Delta) - tE\rceil).$$

- The round-up just rounds up the coefficients of the Q-divisors.
- Another way to think of this is that there are a finite number of discrete valuations v_i (of Frac R) and integers m_i and n_i > 0 such that

$$\mathcal{J}(X, \Delta, \mathfrak{a}^t) = \{r \in R | v_i(r) \ge \lfloor n_i t + m_i \rfloor\}$$

Discreteness and rationality on rings with singularities What about the non-(log)-Q-Gorenstein case? Multiplier ideals Test ideals

Jumping numbers

• So consider a X, Δ , and \mathfrak{a}^t as before.

- And consider what happens to the multiplier ideals $\mathcal{J}(X, \Delta, \mathfrak{a}^t)$ as one varies *t*.
- That is, consider what happens to $\mathcal{J}(X, \Delta, \mathfrak{a}^t) =$

 $\{r \in R | v_i(r) \ge \lfloor n_i t + m_i \rfloor\} = \pi_* \mathcal{O}_{\widetilde{X}}(\lceil K_{\widetilde{X}} - \pi^*(K_X + \Delta) - tE \rceil)$

- Of course, because of the round up / down, this ideal only changes at a discrete set of rational numbers.
- These are called the *jumping numbers of* (X, △, a^t). They were introduced by Ein-Lazarsfeld-Smith-Varolin.

Discreteness and rationality on rings with singularities What about the non-(log)-Q-Gorenstein case? Multiplier ideals Test ideals

Jumping numbers

- So consider a X, Δ , and \mathfrak{a}^t as before.
- And consider what happens to the multiplier ideals

 J(X, Δ, a^t) as one varies t.
- That is, consider what happens to $\mathcal{J}(X, \Delta, \mathfrak{a}^t) =$

 $\{r \in R | v_i(r) \ge \lfloor n_i t + m_i \rfloor\} = \pi_* \mathcal{O}_{\widetilde{X}}(\lceil K_{\widetilde{X}} - \pi^*(K_X + \Delta) - tE \rceil)$

- Of course, because of the round up / down, this ideal only changes at a discrete set of rational numbers.
- These are called the *jumping numbers of* (X, △, a^t). They were introduced by Ein-Lazarsfeld-Smith-Varolin.

Discreteness and rationality on rings with singularities What about the non-(log)-Q-Gorenstein case? Multiplier ideals Test ideals

Jumping numbers

- So consider a X, Δ , and \mathfrak{a}^t as before.
- And consider what happens to the multiplier ideals

 J(X, Δ, a^t) as one varies t.
- That is, consider what happens to $\mathcal{J}(X, \Delta, \mathfrak{a}^t) =$

$$\{r \in \boldsymbol{R} | v_i(r) \geq \lfloor n_i t + m_i \rfloor\} = \pi_* \mathcal{O}_{\widetilde{X}}(\lceil K_{\widetilde{X}} - \pi^*(K_X + \Delta) - t\boldsymbol{E} \rceil)$$

- Of course, because of the round up / down, this ideal only changes at a discrete set of rational numbers.
- These are called the *jumping numbers of* (X, △, a^t). They were introduced by Ein-Lazarsfeld-Smith-Varolin.

Discreteness and rationality on rings with singularities What about the non-(log)-Q-Gorenstein case? Multiplier ideals Test ideals

Jumping numbers

- So consider a X, Δ , and \mathfrak{a}^t as before.
- And consider what happens to the multiplier ideals

 J(X, Δ, a^t) as one varies t.
- That is, consider what happens to $\mathcal{J}(X, \Delta, \mathfrak{a}^t) =$

$$\{r \in \boldsymbol{R} | \boldsymbol{v}_i(r) \geq \lfloor n_i t + m_i \rfloor\} = \pi_* \mathcal{O}_{\widetilde{\boldsymbol{X}}}(\lceil \boldsymbol{K}_{\widetilde{\boldsymbol{X}}} - \pi^*(\boldsymbol{K}_{\boldsymbol{X}} + \Delta) - t\boldsymbol{E} \rceil)$$

- Of course, because of the round up / down, this ideal only changes at a discrete set of rational numbers.
- These are called the *jumping numbers of* (X, △, a^t). They were introduced by Ein-Lazarsfeld-Smith-Varolin.

Discreteness and rationality on rings with singularities What about the non-(log)-Q-Gorenstein case?

Jumping numbers

- So consider a X, Δ , and \mathfrak{a}^t as before.
- And consider what happens to the multiplier ideals

 J(X, Δ, a^t) as one varies t.
- That is, consider what happens to $\mathcal{J}(X, \Delta, \mathfrak{a}^t) =$

$$\{r \in \boldsymbol{R} | \boldsymbol{v}_i(r) \geq \lfloor n_i t + m_i \rfloor\} = \pi_* \mathcal{O}_{\widetilde{X}}(\lceil K_{\widetilde{X}} - \pi^*(K_X + \Delta) - t\boldsymbol{E} \rceil)$$

Multiplier ideals

as one varies *t* (for a fixed log resolution $\pi : \widetilde{X} \to X$).

- Of course, because of the round up / down, this ideal only changes at a discrete set of rational numbers.
- These are called the *jumping numbers of* (X, Δ, a^t). They were introduced by Ein-Lazarsfeld-Smith-Varolin.

ヘロト ヘアト ヘリト・

Multiplier ideals Test ideals

Examples and applications

• For example, if $X = \mathbb{A}^2 = \operatorname{Spec} k[x, y]$, $\Delta = 0$ and $\mathfrak{a} = (x^2, y^3)$. Then the jumping numbers are

 $\{5/6, 7/6, 11/6, 2, 13/6, 17/6, 3, \dots\}.$

- The first jumping number is called the *log canonical threshold*. (In the above example, the log canonical threshold is 5/6.)
- The study log canonical thresholds is an important part of the (MMP) minimal model program.
- In particular, one can explore the (still open) question "termination of flips" using log canonical thresholds. This is via Shokurov's ACC conjecture.

Multiplier ideals Test ideals

Examples and applications

• For example, if $X = \mathbb{A}^2 = \operatorname{Spec} k[x, y]$, $\Delta = 0$ and $\mathfrak{a} = (x^2, y^3)$. Then the jumping numbers are

 $\{5/6,7/6,11/6,2,13/6,17/6,3,\dots\}.$

- The first jumping number is called the *log canonical threshold*. (In the above example, the log canonical threshold is 5/6.)
- The study log canonical thresholds is an important part of the (MMP) minimal model program.
- In particular, one can explore the (still open) question "termination of flips" using log canonical thresholds. This is via Shokurov's ACC conjecture.

Multiplier ideals Test ideals

Examples and applications

• For example, if $X = \mathbb{A}^2 = \operatorname{Spec} k[x, y]$, $\Delta = 0$ and $\mathfrak{a} = (x^2, y^3)$. Then the jumping numbers are

 $\{5/6,7/6,11/6,2,13/6,17/6,3,\dots\}.$

- The first jumping number is called the *log canonical threshold*. (In the above example, the log canonical threshold is 5/6.)
- The study log canonical thresholds is an important part of the (MMP) minimal model program.
- In particular, one can explore the (still open) question "termination of flips" using log canonical thresholds. This is via Shokurov's ACC conjecture.

Multiplier ideals Test ideals

Examples and applications

• For example, if $X = \mathbb{A}^2 = \operatorname{Spec} k[x, y]$, $\Delta = 0$ and $\mathfrak{a} = (x^2, y^3)$. Then the jumping numbers are

 $\{5/6,7/6,11/6,2,13/6,17/6,3,\dots\}.$

- The first jumping number is called the *log canonical threshold*. (In the above example, the log canonical threshold is 5/6.)
- The study log canonical thresholds is an important part of the (MMP) minimal model program.
- In particular, one can explore the (still open) question "termination of flips" using log canonical thresholds. This is via Shokurov's ACC conjecture.

<ロ> <同> <同> <同> < 同> < 同>

Test ideals

ヘロト ヘヨト ヘヨト

Discreteness and rationality on rings with singularities What about the non-(log)-Q-Gorenstein case?

Outline

- Test ideals
- 2 Discreteness and rationality on rings with singularities
- 3 What about the non-(log)-Q-Gorenstein case?

Discreteness and rationality on rings with singularities What about the non-(log)-Q-Gorenstein case? Multiplier ideal Test ideals

Generalized test ideals

- Hara and Yoshida introduced the notion of tight closure of pairs. So let (*R*, a^t) be a pair of an *F*-finite domain *R* and an ideal a such that a ≠ 0.
- For any ideal *I* = (*x*₁,..., *x_d*) ⊆ *R* they define the tight closure of *I*, denoted *I*^{*a^t} to be

 $\{x \in R | \exists c \in R \setminus \{0\}, ca^{\lceil t(p^e - 1) \rceil} x^{p^e} \in I^{[p^e]} \forall e \ge 0\}$

- An element c ∈ R \ {0} is said to be a sharp test element for (R, a^t) if z ∈ I^{*a^t} implies that ca^[t(p^e-1)]z^{p^e} ∈ I^[p^e] for all e ≥ 0. (This is a slight modification of the definition of Hara and Yoshida).
- The *test ideal of* (*R*, a^t), denoted τ_R(a^t) is the ideal generated by all the sharp test elements of *R*.

Multiplier ideals

Discreteness and rationality on rings with singularities What about the non-(log)-Q-Gorenstein case?

Generalized test ideals

- Hara and Yoshida introduced the notion of tight closure of pairs. So let (*R*, a^t) be a pair of an *F*-finite domain *R* and an ideal a such that a ≠ 0.
- For any ideal *I* = (*x*₁,..., *x_d*) ⊆ *R* they define the tight closure of *I*, denoted *I*^{*a^t} to be

$$\{x \in \boldsymbol{R} | \exists \boldsymbol{c} \in \boldsymbol{R} \setminus \{0\}, \boldsymbol{c} \mathfrak{a}^{\lceil t(p^e-1) \rceil} x^{p^e} \in \boldsymbol{I}^{[p^e]} \; \forall \; \boldsymbol{e} \geq 0\}$$

- An element c ∈ R \ {0} is said to be a sharp test element for (R, a^t) if z ∈ I^{*a^t} implies that ca^[t(p^e-1)]z^{p^e} ∈ I^[p^e] for all e ≥ 0. (This is a slight modification of the definition of Hara and Yoshida).
- The *test ideal of* (*R*, a^t), denoted τ_R(a^t) is the ideal generated by all the sharp test elements of *R*.

Discreteness and rationality on rings with singularities What about the non-(log)-Q-Gorenstein case? Multiplier ideal Test ideals

Generalized test ideals

- Hara and Yoshida introduced the notion of tight closure of pairs. So let (*R*, a^t) be a pair of an *F*-finite domain *R* and an ideal a such that a ≠ 0.
- For any ideal *I* = (*x*₁,..., *x_d*) ⊆ *R* they define the tight closure of *I*, denoted *I*^{*a^t} to be

$$\{x \in \boldsymbol{R} | \exists \boldsymbol{c} \in \boldsymbol{R} \setminus \{0\}, \boldsymbol{c} \mathfrak{a}^{\lceil t(p^e - 1) \rceil} x^{p^e} \in \boldsymbol{I}^{[p^e]} \; \forall \; \boldsymbol{e} \geq 0\}$$

- An element c ∈ R \ {0} is said to be a sharp test element for (R, a^t) if z ∈ I^{*a^t} implies that ca^[t(p^e-1)]z^{p^e} ∈ I^[p^e] for all e ≥ 0. (This is a slight modification of the definition of Hara and Yoshida).
- The *test ideal of* (R, a^t) , denoted $\tau_R(a^t)$ is the ideal generated by all the sharp test elements of R.

Discreteness and rationality on rings with singularities What about the non-(log)-Q-Gorenstein case? Multiplier ideal Test ideals

Generalized test ideals

- Hara and Yoshida introduced the notion of tight closure of pairs. So let (*R*, a^t) be a pair of an *F*-finite domain *R* and an ideal a such that a ≠ 0.
- For any ideal *I* = (*x*₁,..., *x_d*) ⊆ *R* they define the tight closure of *I*, denoted *I*^{*a^t} to be

$$\{x \in \boldsymbol{R} | \exists \boldsymbol{c} \in \boldsymbol{R} \setminus \{0\}, \boldsymbol{c} \mathfrak{a}^{\lceil t(p^e - 1) \rceil} x^{p^e} \in \boldsymbol{I}^{[p^e]} \; \forall \; \boldsymbol{e} \geq 0\}$$

- An element c ∈ R \ {0} is said to be a sharp test element for (R, a^t) if z ∈ I^{*a^t} implies that ca^[t(p^e-1)]z^{p^e} ∈ I^[p^e] for all e ≥ 0. (This is a slight modification of the definition of Hara and Yoshida).
- The *test ideal of* (*R*, a^t), denoted τ_R(a^t) is the ideal generated by all the sharp test elements of *R*.

Multiplier ideals

More on generalized test ideals

- If (*R*, a^t) in characteristic *p* ≫ 0 is reduced generically from a characteristic zero normal Q-Gorenstein ring *R*₀ with ideal a₀, then τ_R(a^t) coincides with the reduction of the multiplier ideal *J*(Spec *R*₀, a^t₀). [Hara, Yoshida]
 - However, the side of $p \gg 0$ needed depends on *t*.
- As t increases, one can show that τ_R(a^t) becomes smaller (but it's not clear if it jumps at a discrete set of rational numbers).
- Define an *F*-jumping number of (*R*, a^t) to be a t > 0 such that τ_R(a^{t-ϵ}) ≠ τ_R(a^t) for all sufficiently small ϵ > 0.

< □ > < 同 > < 三 > <

Multiplier ideals

More on generalized test ideals

- If (*R*, a^t) in characteristic *p* ≫ 0 is reduced generically from a characteristic zero normal Q-Gorenstein ring *R*₀ with ideal a₀, then τ_R(a^t) coincides with the reduction of the multiplier ideal *J*(Spec *R*₀, a^t₀). [Hara, Yoshida]
 - However, the side of $p \gg 0$ needed depends on *t*.
- As t increases, one can show that τ_R(a^t) becomes smaller (but it's not clear if it jumps at a discrete set of rational numbers).
- Define an *F*-jumping number of (*R*, a^t) to be a t > 0 such that τ_R(a^{t-ϵ}) ≠ τ_R(a^t) for all sufficiently small ϵ > 0.

ヘロト ヘアト ヘビト ヘ

Multiplier ideals

More on generalized test ideals

- If (*R*, a^t) in characteristic *p* ≫ 0 is reduced generically from a characteristic zero normal Q-Gorenstein ring *R*₀ with ideal a₀, then τ_R(a^t) coincides with the reduction of the multiplier ideal *J*(Spec *R*₀, a^t₀). [Hara, Yoshida]
 - However, the side of $p \gg 0$ needed depends on *t*.
- As *t* increases, one can show that *τ_R(a^t)* becomes smaller (but it's not clear if it jumps at a discrete set of rational numbers).
- Define an *F*-jumping number of (*R*, a^t) to be a t > 0 such that τ_R(a^{t-ϵ}) ≠ τ_R(a^t) for all sufficiently small ϵ > 0.

イロト イポト イヨト イヨト

Multiplier ideals

More on generalized test ideals

- If (*R*, a^t) in characteristic *p* ≫ 0 is reduced generically from a characteristic zero normal Q-Gorenstein ring *R*₀ with ideal a₀, then τ_R(a^t) coincides with the reduction of the multiplier ideal *J*(Spec *R*₀, a^t₀). [Hara, Yoshida]
 - However, the side of $p \gg 0$ needed depends on *t*.
- As *t* increases, one can show that *τ_R(a^t)* becomes smaller (but it's not clear if it jumps at a discrete set of rational numbers).
- Define an *F*-jumping number of (*R*, a^t) to be a t > 0 such that τ_R(a^{t-ϵ}) ≠ τ_R(a^t) for all sufficiently small ϵ > 0.

イロト イポト イヨト イヨト

Discreteness and rationality on rings with singularities What about the non-(log)-Q-Gorenstein case?

The question

• So it is natural to ask, are the set of *F*-jumping numbers a discrete set of rational numbers?

Test ideals

- Yes!
 - For R regular and finite type over a perfect field [Blickle, Mustaţă, Smith].
 - For *R* local regular and α principal [Katzman, Lyubeznik, Zhang].
 - Other special cases are due to [Hara-Monsky], [Takagi] (and also [S., Takagi])

・ロト ・ 雪 ト ・ ヨ ト ・

Discreteness and rationality on rings with singularities What about the non-(log)-Q-Gorenstein case?

The question

• So it is natural to ask, are the set of *F*-jumping numbers a discrete set of rational numbers?

Test ideals

- Yes!
 - For *R* regular and finite type over a perfect field [Blickle, Mustață, Smith].
 - For *R* local regular and α principal [Katzman, Lyubeznik, Zhang].
 - Other special cases are due to [Hara-Monsky], [Takagi] (and also [S., Takagi])

< □ > < 同 > < 臣

Discreteness and rationality on rings with singularities What about the non-(log)-Q-Gorenstein case?

The question

• So it is natural to ask, are the set of *F*-jumping numbers a discrete set of rational numbers?

Test ideals

- Yes!
 - For *R* regular and finite type over a perfect field [Blickle, Mustaţă, Smith].
 - For *R* local regular and α principal [Katzman, Lyubeznik, Zhang].
 - Other special cases are due to [Hara-Monsky], [Takagi] (and also [S., Takagi])

Discreteness and rationality on rings with singularities What about the non-(log)-Q-Gorenstein case?

The question

• So it is natural to ask, are the set of *F*-jumping numbers a discrete set of rational numbers?

Test ideals

- Yes!
 - For *R* regular and finite type over a perfect field [Blickle, Mustaţă, Smith].
 - For *R* local regular and α principal [Katzman, Lyubeznik, Zhang].
 - Other special cases are due to [Hara-Monsky], [Takagi] (and also [S., Takagi])

< □ > < □ > < □

Discreteness and rationality on rings with singularities What about the non-(log)-Q-Gorenstein case?

The question

• So it is natural to ask, are the set of *F*-jumping numbers a discrete set of rational numbers?

Test ideals

- Yes!
 - For *R* regular and finite type over a perfect field [Blickle, Mustaţă, Smith].
 - For *R* local regular and α principal [Katzman, Lyubeznik, Zhang].
 - Other special cases are due to [Hara-Monsky], [Takagi] (and also [S., Takagi])

Multiplier ideals

Q-divisors Δ such that $K_R + \Delta$ is Q-Cartier

- Suppose that Δ is an effective Q-divisor on Spec R (which is normal). One can define tight closure of an ideal *I* with respect to Δ (and you can throw in a^t too). That is, you can define *I*^{*Δ,a^t}.
- However, another way to think of it is (for a local ring), there is a bijection of sets

 $\left\{\begin{array}{c} \text{Effective } \mathbb{Q}\text{-divisors } \Delta\\ \text{such that } (p^e - 1)(K_X + \Delta)\\ \text{is Cartier} \end{array}\right\} \leftrightarrow \cdot$

 $\begin{cases} Nonzero elements of \\ Hom_R(R^{1/p^e}, R) \end{cases}$

• And if *R* is complete, then this is also equivalent to:

Nonzero $R\{F^e\}$ -module / structures on E_R

Q-divisors Δ such that $K_R + \Delta$ is Q-Cartier

- Suppose that Δ is an effective Q-divisor on Spec R (which is normal). One can define tight closure of an ideal *I* with respect to Δ (and you can throw in a^t too). That is, you can define *I*^{*Δ,a^t}.
- However, another way to think of it is (for a local ring), there is a bijection of sets

$$\left\{ \begin{array}{l} \text{Effective } \mathbb{Q}\text{-divisors } \Delta \\ \text{such that } (p^e - 1)(\mathcal{K}_X + \Delta) \\ \text{ is Cartier} \end{array} \right\} \leftrightarrow \left\{ \begin{array}{l} \text{Nonzero elements of} \\ \text{Hom}_R(R^{1/p^e}, R) \end{array} \right\} \Big/ \sim$$

• And if R is complete, then this is also equivalent to:

Nonzero $R\{F^e\}$ -module structures on E_R

Q-divisors Δ such that $K_R + \Delta$ is Q-Cartier

- Suppose that Δ is an effective Q-divisor on Spec R (which is normal). One can define tight closure of an ideal *I* with respect to Δ (and you can throw in a^t too). That is, you can define *I*^{*Δ,a^t}.
- However, another way to think of it is (for a local ring), there is a bijection of sets

$$\left\{\begin{matrix} \text{Effective } \mathbb{Q}\text{-divisors }\Delta\\ \text{such that } (p^e-1)(\mathcal{K}_X+\Delta)\\ \text{ is Cartier}\end{matrix}\right\} \leftrightarrow \left\{\begin{matrix} \text{Nonzero elements of}\\ \text{Hom}_R(R^{1/p^e},R)\end{matrix}\right\} \Big/ \sim$$

• And if *R* is complete, then this is also equivalent to:

$${igl({
m Nonzero}\ R\{F^e\}
m -module} \ {
m structures} {
m on}\ E_R igr\} / \sim$$

4

Outline

- Multiplier ideals
- Test ideals

Discreteness and rationality on rings with singularities

イロト イポト イヨト

3 What about the non-(log)-Q-Gorenstein case?

The Katzman-Lyubeznik-Zhang argument

• One option is to modify the KLZ argument (that you just heard about). One can get the following theorem

Theorem (S., Takagi, Zhang)

- There are several places where you need to modify the original argument: (insert the test ideal τ(R, Δ)).
- In the the Katzman-Lyubeznik-Zhang argument, the real key point is the Hartshorne-Speiser-Lyubeznik theorem.

The Katzman-Lyubeznik-Zhang argument

• One option is to modify the KLZ argument (that you just heard about). One can get the following theorem

Theorem (S., Takagi, Zhang)

- There are several places where you need to modify the original argument: (insert the test ideal τ(R, Δ)).
- In the the Katzman-Lyubeznik-Zhang argument, the real key point is the Hartshorne-Speiser-Lyubeznik theorem.

The Katzman-Lyubeznik-Zhang argument

• One option is to modify the KLZ argument (that you just heard about). One can get the following theorem

Theorem (S., Takagi, Zhang)

- There are several places where you need to modify the original argument: (insert the test ideal τ(R, Δ)).
- In the the Katzman-Lyubeznik-Zhang argument, the real key point is the Hartshorne-Speiser-Lyubeznik theorem.

The Katzman-Lyubeznik-Zhang argument

• One option is to modify the KLZ argument (that you just heard about). One can get the following theorem

Theorem (S., Takagi, Zhang)

- There are several places where you need to modify the original argument: (insert the test ideal τ(R, Δ)).
- In the the Katzman-Lyubeznik-Zhang argument, the real key point is the Hartshorne-Speiser-Lyubeznik theorem.

Outside of the local setting?

• In the *F*-finite case, one can phrase a dual form of Hartshorne-Lyubeznik-Smith.

Question

Suppose that *M* is a finite *R*-module and that $\phi : M \to M$ is an additive map such that $\phi(r^{p^e}x) = r\phi(x)$. Let ϕ_n be the map obtained by composing ϕ with itself *n*-times. Does

 $\operatorname{Im}(\phi_1) \supseteq \operatorname{Im}(\phi_2) \supseteq \operatorname{Im}(\phi_3) \supseteq \dots$ stabilize?

- If this is true, then one can modify the KLZ proof to work for any *F*-finite ring (not necessarily local).
- We can answer this question affirmatively for *R* of finite type over a perfect field.

Outside of the local setting?

 In the *F*-finite case, one can phrase a dual form of Hartshorne-Lyubeznik-Smith.

Question

Suppose that *M* is a finite *R*-module and that $\phi : M \to M$ is an additive map such that $\phi(r^{p^e}x) = r\phi(x)$. Let ϕ_n be the map obtained by composing ϕ with itself *n*-times. Does

$\operatorname{Im}(\phi_1) \supseteq \operatorname{Im}(\phi_2) \supseteq \operatorname{Im}(\phi_3) \supseteq \dots$ stabilize?

- If this is true, then one can modify the KLZ proof to work for any *F*-finite ring (not necessarily local).
- We can answer this question affirmatively for *R* of finite type over a perfect field.

Outside of the local setting?

 In the *F*-finite case, one can phrase a dual form of Hartshorne-Lyubeznik-Smith.

Question

Suppose that *M* is a finite *R*-module and that $\phi : M \to M$ is an additive map such that $\phi(r^{p^e}x) = r\phi(x)$. Let ϕ_n be the map obtained by composing ϕ with itself *n*-times. Does

 $\operatorname{Im}(\phi_1) \supseteq \operatorname{Im}(\phi_2) \supseteq \operatorname{Im}(\phi_3) \supseteq \ldots$ stabilize?

- If this is true, then one can modify the KLZ proof to work for any *F*-finite ring (not necessarily local).
- We can answer this question affirmatively for *R* of finite type over a perfect field.

Outside of the local setting?

 In the *F*-finite case, one can phrase a dual form of Hartshorne-Lyubeznik-Smith.

Question

Suppose that *M* is a finite *R*-module and that $\phi : M \to M$ is an additive map such that $\phi(r^{p^e}x) = r\phi(x)$. Let ϕ_n be the map obtained by composing ϕ with itself *n*-times. Does

 $\operatorname{Im}(\phi_1) \supseteq \operatorname{Im}(\phi_2) \supseteq \operatorname{Im}(\phi_3) \supseteq \ldots$ stabilize?

- If this is true, then one can modify the KLZ proof to work for any *F*-finite ring (not necessarily local).
- We can answer this question affirmatively for *R* of finite type over a perfect field.

The Blickle-Mustață-Smith argument

- In their proof, they use a characterization of the test ideal which uses the following construction.
- Given an ideal *I*, they define $I^{[1/p^e]}$ to be the smallest ideal *J* of *R* such that $I \subseteq J^{[p^e]}$.
- However, this [1/p^e] construction can be interepretted as a map R^{1/p^e} → R. Thus this ∆ gives a natural way to generalize their argument.
- One reduces to the regular case via "*F*-adjunction".

Theorem (S., Takagi, Zhang)

- In their proof, they use a characterization of the test ideal which uses the following construction.
- Given an ideal *I*, they define *I*^[1/p^e] to be the smallest ideal *J* of *R* such that *I* ⊆ *J*^[p^e].
- However, this [1/p^e] construction can be interepretted as a map R^{1/p^e} → R. Thus this ∆ gives a natural way to generalize their argument.
- One reduces to the regular case via "*F*-adjunction".

Theorem (S., Takagi, Zhang)

- In their proof, they use a characterization of the test ideal which uses the following construction.
- Given an ideal *I*, they define *I*^[1/p^e] to be the smallest ideal *J* of *R* such that *I* ⊆ *J*^[p^e].
- However, this [1/p^e] construction can be interepreted as a map R^{1/p^e} → R. Thus this Δ gives a natural way to generalize their argument.
- One reduces to the regular case via "*F*-adjunction".

Theorem (S., Takagi, Zhang)

- In their proof, they use a characterization of the test ideal which uses the following construction.
- Given an ideal *I*, they define *I*^[1/p^e] to be the smallest ideal *J* of *R* such that *I* ⊆ *J*^[p^e].
- However, this [1/p^e] construction can be interepretted as a map R^{1/p^e} → R. Thus this Δ gives a natural way to generalize their argument.
- One reduces to the regular case via "F-adjunction".

Theorem (S., Takagi, Zhang)

- In their proof, they use a characterization of the test ideal which uses the following construction.
- Given an ideal *I*, they define $I^{[1/p^e]}$ to be the smallest ideal *J* of *R* such that $I \subseteq J^{[p^e]}$.
- However, this [1/p^e] construction can be interepretted as a map R^{1/p^e} → R. Thus this Δ gives a natural way to generalize their argument.
- One reduces to the regular case via "F-adjunction".

Theorem (S., Takagi, Zhang)

Outline

- Multiplier ideals
- Test ideals
- 2 Discreteness and rationality on rings with singularities

< ロ > < 同 > < 三 >

What about the non-(log)-Q-Gorenstein case?

- Recently, de Fernex and Hacon have introduced multiplier ideals for pairs (X, a^t) when X is not Q-Gorenstein (and there is no Δ).
- There still seem to be jumping numbers, and one can ask about discreteness and rationality there as well.
- However, it's completely open!
- Furthermore, the things one can prove about such multiplier ideals seem to coincide with what we know about test ideals.

- Recently, de Fernex and Hacon have introduced multiplier ideals for pairs (X, a^t) when X is not Q-Gorenstein (and there is no Δ).
- There still seem to be jumping numbers, and one can ask about discreteness and rationality there as well.
- However, it's completely open!
- Furthermore, the things one can prove about such multiplier ideals seem to coincide with what we know about test ideals.

- Recently, de Fernex and Hacon have introduced multiplier ideals for pairs (X, a^t) when X is not Q-Gorenstein (and there is no Δ).
- There still seem to be jumping numbers, and one can ask about discreteness and rationality there as well.
- However, it's completely open!
- Furthermore, the things one can prove about such multiplier ideals seem to coincide with what we know about test ideals.

- Recently, de Fernex and Hacon have introduced multiplier ideals for pairs (X, a^t) when X is not Q-Gorenstein (and there is no Δ).
- There still seem to be jumping numbers, and one can ask about discreteness and rationality there as well.
- However, it's completely open!
- Furthermore, the things one can prove about such multiplier ideals seem to coincide with what we know about test ideals.