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Summary

@ Link a notion from characteristic zero (called log canonical
centers / centers of log canonicity), with (generalizations
of) annihilators of F-stable submodules of local
cohomology.
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Summary

@ Link a notion from characteristic zero (called log canonical
centers / centers of log canonicity), with (generalizations
of) annihilators of F-stable submodules of local
cohomology.

o A submodule N c HY(R) is called F-stable if F(N) C N
under the Frobenius map F : HZ(R) — HI(R).
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Summary

@ Link a notion from characteristic zero (called log canonical
centers / centers of log canonicity), with (generalizations
of) annihilators of F-stable submodules of local
cohomology.

o A submodule N c HY(R) is called F-stable if F(N) C N
under the Frobenius map F : HZ(R) — HI(R).

@ Use this connection as inspiration and a tool to prove new
results about both sorts of objects.
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Universal Assumptions

@ All rings are reduced.

@ All rings of characteristic zero are essentially of finite type
over C (where C is your favorite field of characteristic zero).
@ All rings of positive characteristic are F-finite

o (thatis, if R is viewed as an R-module via the action of
Frobenius, it is a finite R-module).

o (in other words, R# is a finite R-module).
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Some Definitions

F-pure rings and pairs

All rings are assumed to be F-finite of characteristic p > 0. Let
a C R be anideal with an R° # 0 and suppose that t > 0 is a
positive number.

There exist definitions for pairs (R, A) also.
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Some Definitions

F-pure rings and pairs

All rings are assumed to be F-finite of characteristic p > 0. Let
a C R be anideal with an R° # 0 and suppose that t > 0 is a
positive number.

@ Aring is called F-pure if the Frobenius map R — Re*®
splits.

There exist definitions for pairs (R, A) also.
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Some Definitions

F-pure rings and pairs

All rings are assumed to be F-finite of characteristic p > 0. Let
a C R be anideal with an R° # 0 and suppose that t > 0 is a
positive number.

@ Aring is called F-pure if the Frobenius map R — Re*®
splits.

o A pair (R, a!) is called sharply F-pure if there exists an
integer e > 0 and an a € a/!(P*~")1 such that the map

1
e

X
\)
he]

splits.
There exist definitions for pairs (R, A) also.
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Some Definitions Part 2

F-regular rings and pairs

Same assumptions as before.
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Some Definitions Part 2

F-regular rings and pairs

Same assumptions as before.
@ Aring Ris called strongly F-regular if for every ¢ € R°,
there exists an e > 0 such that the map

a1
e

X
o
he]

splits.
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Some Definitions Part 2

F-regular rings and pairs

Same assumptions as before.
@ Aring Ris called strongly F-regular if for every ¢ € R°,
there exists an e > 0 such that the map

a1
e

X
o
he]

splits.
@ A pair (R, da!) is called strongly F-regular if for ever ¢ € R°,
there exists an e > 0 and a € al!(P*~"1 such that the map

a1
1 x(ca)P®

R Rr® Rr®

splits.
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Some More Definitions
Tight Closure

Same assumptions as before.
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Some More Definitions
Tight Closure

Same assumptions as before.

@ Given an ideal | C R, the a!-tight closure of I, (denoted **)
is defined as

{x € R|3c € R°,such that for all @ > 0, calP*=D1xP° ¢ [IP1y
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Some More Definitions
Tight Closure

Same assumptions as before.

@ Given anideal | C R, the a!-tight closure of |, (denoted I*“')
is defined as

{x € R|3c € R°,such that for all @ > 0, calP*=D1xP° ¢ [IP1y

@ Given a module N C M, the a!-tight closure of N in M,
(denoted Nif) is defined as

° 1 [ee-n1 o [09]
{ze M|3c € R°,suchthatforalle > 0,cr°a »°  ZP e Njj '}
Here z°° is defined to be the image of z via the map
1 e
M — R»® @g M and N,[\ﬁ,’ lis defined to be the image of
R® g N inside R?® @g M.
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Even More Definitions

Test Ideals

We keep on with the same assumptions.
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Even More Definitions

Test Ideals

We keep on with the same assumptions.

@ The test ideal 7(a!) is defined to be the set of elements
¢ € R such that for every x € I*® we have that

calt(Pe=1)1xp® < [Ip°]

for all e > 0.
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Even More Definitions

Test Ideals

We keep on with the same assumptions.

@ The test ideal 7(a!) is defined to be the set of elements
¢ € R such that for every x € I*® we have that

calt(Pe=1)1xp® < [Ip°]

forall e > 0.

@ The big/non-finitistic test ideal 7(a') = 1p(a!) is defined to
be the set of elements ¢ € R such that for every z € Nj
we have that

1 [te®-1)]
crfa  P° zpeEN,[\ge]

for all e > 0.
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The Final Definition

in positive characteristic
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The Final Definition

in positive characteristic

@ Aring R is said to be F-injective if for every maximal ideal
m € m— Spec R, the induced Frobenius map on local
cohomology ‘ .

Heo(Rim) — Hip(Rim)

is injective for every i > 0.
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A Review of the Dictionary

F-singularities vs singularities in birational geometry

@ Begin with a pair (R, A) where R is a normal domain of
finite type over C and A is an effective Q-divisor on
X = SpecR

Positive Characteristic Characteristic Zero
Test Ideals, 7(A) Multiplier Ideals, J(A)
F-Pure Singularities Log Canonical Singularities
Strongly F-Regular Singularities Log Terminal Singularities
F-Injective Singularities Du Bois Singularities

11
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A Review of the Dictionary

F-singularities vs singularities in birational geometry

@ Begin with a pair (R, A) where R is a normal domain of
finite type over C and A is an effective Q-divisor on
X = SpecR
o (A is a formal sum prime divisors on X with nonnegative
rational coefficients.)

Positive Characteristic Characteristic Zero
Test Ideals, 7(A) Multiplier Ideals, J(A)
F-Pure Singularities Log Canonical Singularities
Strongly F-Regular Singularities Log Terminal Singularities
F-Injective Singularities Du Bois Singularities
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A Review of the Dictionary

F-singularities vs singularities in birational geometry

@ Begin with a pair (R, A) where R is a normal domain of
finite type over C and A is an effective Q-divisor on
X = SpecR
o (A is a formal sum prime divisors on X with nonnegative
rational coefficients.)
@ Assume that Kx + A is Q-Cartier, if A = 0 this means R is
Q-Gorenstein

Positive Characteristic Characteristic Zero
Test Ideals, 7(A) — Multiplier Ideals, J(A)
F-Pure Singularities = Log Canonical Singularities
Strongly F-Regular Singularities <« Log Terminal Singularities
F-Injective Singularities = Du Bois Singularities
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A Review of the Dictionary

F-singularities vs singularities in birational geometry

@ Begin with a pair (R, A) where R is a normal domain of
finite type over C and A is an effective Q-divisor on
X = SpecR
o (A is a formal sum prime divisors on X with nonnegative
rational coefficients.)
@ Assume that Kx + A is Q-Cartier, if A = 0 this means R is
Q-Gorenstein
o (For some integer n > 0, Ox(n(Kg + A)) is a locally free)

Positive Characteristic Characteristic Zero
Test Ideals, 7(A) — Multiplier Ideals, J(A)
F-Pure Singularities = Log Canonical Singularities
Strongly F-Regular Singularities <« Log Terminal Singularities
F-Injective Singularities = Du Bois Singularities
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A Review of the Dictionary

F-singularities vs singularities in birational geometry

@ Begin with a pair (R, A) where R is a normal domain of
finite type over C and A is an effective Q-divisor on
X = SpecR
o (A is a formal sum prime divisors on X with nonnegative
rational coefficients.)
@ Assume that Kx + A is Q-Cartier, if A = 0 this means R is
Q-Gorenstein
o (For some integer n > 0, Ox(n(Kg + A)) is a locally free)
@ Reduce generically to characteristic p.

Positive Characteristic Characteristic Zero
Test Ideals, 7(A) Multiplier Ideals, J(A)
F-Pure Singularities Log Canonical Singularities
Strongly F-Regular Singularities Log Terminal Singularities
F-Injective Singularities Du Bois Singularities

L1
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An Informal Definition of Log Canonical Centers

Suppose that (R, A) is log canonical. (If you want to assume
that there is no A, that’s ok)

@ Roughly speaking, we say that Q € Spec R (not
necessarily a maximal ideal) is a log canonical center if

Positive Characteristic Characteristic Zero

Recall: F-Pure Singularities = Log Canonical Singularities
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An Informal Definition of Log Canonical Centers

Suppose that (R, A) is log canonical. (If you want to assume
that there is no A, that’s ok)
@ Roughly speaking, we say that Q € Spec R (not
necessarily a maximal ideal) is a log canonical center if
@ the pair (Rq, Ag) is only “barely” log canonical
o (Rq,Aq) is just the pair (R, A) localized at Q.

Positive Characteristic Characteristic Zero
F-Pure Singularities —> Log Canonical Singularities

Recall:

Karl Schwede A Geometric Characterization of (generalizations of) F-ldeals



Background and Definitions Characteristic p > 0 singularities
Log Canonical Centers
Properties of log canonical centers

The Definition of Centers of Log Canonicity

aka Log Canonical Centers

Choose Q € Spec R. We say that Q is a
center of log canonicity / log canonical center /non-log terminal center

for the pair (R, A), IF
o For every element f € Q,
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The Definition of Centers of Log Canonicity

aka Log Canonical Centers

Choose Q € Spec R. We say that Q is a
center of log canonicity / log canonical center /non-log terminal center
for the pair (R, A), IF

o For every element f € Q,

@ and every € > 0,
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The Definition of Centers of Log Canonicity

aka Log Canonical Centers

Choose Q € Spec R. We say that Q is a
center of log canonicity / log canonical center /non-log terminal center
for the pair (R, A), IF
o For every element f € Q,
@ and every € > 0,
@ the pair (R, A + ediv(f)) is NOT log canonical at Q (at the
local ring/stalk),
this is the same as
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The Definition of Centers of Log Canonicity

aka Log Canonical Centers

Choose Q € Spec R. We say that Q is a
center of log canonicity / log canonical center /non-log terminal center
for the pair (R, A), IF
o For every element f € Q,
@ and every € > 0,
@ the pair (R, A + ediv(f)) is NOT log canonical at Q (at the
local ring/stalk),

this is the same as
o the triple (Rq, Aq, f¢) is NOT log canonical
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The Definition of Centers of Log Canonicity

aka Log Canonical Centers

Choose Q € Spec R. We say that Q is a
center of log canonicity / log canonical center /non-log terminal center
for the pair (R, A), IF
o For every element f € Q,
@ and every € > 0,
@ the pair (R, A + ediv(f)) is NOT log canonical at Q (at the
local ring/stalk),
this is the same as
o the triple (Rq, Aq, f¢) is NOT log canonical

o if A =0, this is just the same as saying that
(Rq, f¢) is NOT log canonical
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The Definition of Centers of Log Canonicity

aka Log Canonical Centers

Choose Q € Spec R. We say that Q is a
center of log canonicity / log canonical center /non-log terminal center
for the pair (R, A), IF
o For every element f € Q,
@ and every € > 0,
@ the pair (R, A + ediv(f)) is NOT log canonical at Q (at the
local ring/stalk),
this is the same as
o the triple (Rq, Aq, f¢) is NOT log canonical
o if A =0, this is just the same as saying that
(Rq, f¢) is NOT log canonical
If you are comfortable with “discrepancies”, the log canonical
centers are exactly the points Q € Spec R which are dominated
by divisors with discrepancy < —1.
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Basic Observations About Log Canonical Centers

Suppose that (R, A) is log canonical.
@ There are only finitely many log canonical centers.

Positive Characteristic Characteristic Zero
Recall: Test Ideals — Multiplier Ideals
F-Pure Singularities = Log Canonical Singularities
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Basic Observations About Log Canonical Centers

Suppose that (R, A) is log canonical.
@ There are only finitely many log canonical centers.
o This follows since the log canonical centers can be

identified on a single resolution (using the description
involving discrepancies)

Positive Characteristic Characteristic Zero
Recall: Test Ideals — Multiplier Ideals
F-Pure Singularities = Log Canonical Singularities

Karl Schwede A Geometric Characterization of (generalizations of) F-ldeals



Background and Definitions Characteristic p > 0 singularities
Log Canonical Centers
Properties of log canonical centers

Basic Observations About Log Canonical Centers

Suppose that (R, A) is log canonical.
@ There are only finitely many log canonical centers.

o This follows since the log canonical centers can be
identified on a single resolution (using the description
involving discrepancies)

@ The intersection of all centers of log canonicity is the
multiplier ideal.

Positive Characteristic Characteristic Zero
Recall: Test Ideals — Multiplier Ideals
F-Pure Singularities = Log Canonical Singularities

Karl Schwede A Geometric Characterization of (generalizations of) F-ldeals



Background and Definitions Characteristic p > 0 singularities
Log Canonical Centers
Properties of log canonical centers

Basic Observations About Log Canonical Centers

Suppose that (R, A) is log canonical.
@ There are only finitely many log canonical centers.

o This follows since the log canonical centers can be
identified on a single resolution (using the description
involving discrepancies)

@ The intersection of all centers of log canonicity is the
multiplier ideal.

o This follows since in a log canonical pair, the multiplier ideal
is a radical ideal and defines the non-log terminal locus.

Positive Characteristic Characteristic Zero
Recall: Test Ideals — Multiplier Ideals
F-Pure Singularities — Log Canonical Singularities
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Deeper Results and Relations To Characteristic p > 0

Characteristic Zero Characteristic p > 0
(R, A) is log canonical Ris F-pure

Multiplier Ideals, J(R)

Log Canonical Singularities
Log Terminal Singularities
Du Bois Singularities

Test Ideals, 7(R)

F-Pure Singularities

Strongly F-Regular Singularities
F-Injective Singularities

Recall:

AN
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Deeper Results and Relations To Characteristic p > 0

Characteristic Zero
(R, A) is log canonical

Characteristic p > 0
Ris F-pure

Finite # of log canonical centers. If Ris local, finite # of annihilators

of F-stable submodules of HY(R)
[Enescu-Hochster, Sharp]

Multiplier Ideals, J(R)

Recall:

Log Canonical Singularities

Log Terminal Singularities
Du Bois Singularities

Karl Schwede

Test Ideals, 7(R)

F-Pure Singularities

Strongly F-Regular Singularities
F-Injective Singularities
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Deeper Results and Relations To Characteristic p > 0

Characteristic Zero Characteristic p > 0
(R, A) is log canonical Ris F-pure

Finite # of log canonical centers. If Ris local, finite # of annihilators
of F-stable submodules of HY(R)
[Enescu-Hochster, Sharp]

If Ris log terminal then R/7(R) is F-pure [Vassilev],
R/J(A) is Du Bois [-] also see [Fedder-Watanabe]

Multiplier Ideals, J(R)

Log Canonical Singularities
Log Terminal Singularities
Du Bois Singularities

Test Ideals, 7(R)

F-Pure Singularities

Strongly F-Regular Singularities
F-Injective Singularities

Recall:

T
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Characteristic p > 0 singularities
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Deeper Results and Relations To Characteristic p > 0

Characteristic Zero
(R, A) is log canonical

Characteristic p > 0
Ris F-pure

Finite # of log canonical centers.

If R is local, finite # of annihilators
of F-stable submodules of HY(R)
[Enescu-Hochster, Sharp]

If Ris log terminal then
R/J(A) is Du Bois [-]

R/7(R) is F-pure [Vassilev],
also see [Fedder-Watanabe]

If R is log terminal then
R/ (a largest log canonical center)
is log terminal [Kawamata]

If R is local then
R/ (Splitting Prime) is strongly
F-regular, [Aberbach-Enescu]

Multiplier Ideals, J(R)

Log Canonical Singularities
Log Terminal Singularities
Du Bois Singularities

Recall:

Karl Schwede
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Test Ideals, 7(R)

F-Pure Singularities

Strongly F-Regular Singularities
F-Injective Singularities
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Deeper Results and Relations To Characteristic p > 0

Characteristic Zero Characteristic p > 0
(R, A) is log canonical Ris F-pure
Finite # of log canonical centers. If Ris local, finite # of annihilators
of F-stable submodules of HY(R)
[Enescu-Hochster, Sharp]
If Ris log terminal then R/7(R) is F-pure [Vassilev],
R/J(A) is Du Bois [-] also see [Fedder-Watanabe]
If R is log terminal then If R is local then
R/ (alargest log canonical center) R/ (Splitting Prime) is strongly
is log terminal [Kawamata] F-regular, [Aberbach-Enescu]
If I = NQ; is an intersection If /is an annihilator of an F-stable
of log canonical centers, then R/ submodule of HZ(R), then R/I
is seminormal. [Ambro] is F-pure [Enescu-Hochster]
Multiplier Ideals, J(R) — Test Ideals, 7(R)
Recall: Log Cano_nical _Singula_ir_ities —= F-Pure S?ngular?t?es
Log Terminal Singularities <=  Strongly F-Regular Singularities
Du Bois Singularities = F-Injective Singularities

Karl Schwede A Geometric Characterization of (generalizations of) F-ldeals



Definitions And First Properties

A Positive Characteristic Analogue of Log Canonical Centers Uniformly F-Compatible Ideals

Outline

Q A Positive Characteristic Analogue of Log Canonical
Centers
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A Positive Characteristic Analogue of Log Canonical Centers Uniformly F-Compatible Ideals

A First Definition Of Centers of F-Purity

Definition. Suppose that R is a reduced F-finite ring. We say
that Q € Spec R is a center of F-purity if
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Definitions And First Properties

A Positive Characteristic Analogue of Log Canonical Centers Uniformly F-Compatible Ideals

A First Definition Of Centers of F-Purity

Definition. Suppose that R is a reduced F-finite ring. We say
that Q € Spec R is a center of F-purity if
@ Forevery f € QRqg and for every e > 0,
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Definitions And First Properties

A Positive Characteristic Analogue of Log Canonical Centers Uniformly F-Compatible Ideals

A First Definition Of Centers of F-Purity

Definition. Suppose that R is a reduced F-finite ring. We say
that Q € Spec R is a center of F-purity if

@ Forevery f € QRqg and for every e > 0,

@ the map

a o8
Ro R}
11— £ — (1)

does NOT split.
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Definitions And First Properties

A Positive Characteristic Analogue of Log Canonical Centers Uniformly F-Compatible Ideals

A First Definition Of Centers of F-Purity

Definition. Suppose that R is a reduced F-finite ring. We say
that Q € Spec R is a center of F-purity if

@ Forevery f € QRqg and for every e > 0,

@ the map

a o8
Ro R}
11— £ — (1)

does NOT split.
Note that any minimal prime of the non-strongly F-regular locus is a
center of F-purity.
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A Positive Characteristic Analogue of Log Canonical Centers Uniformly F-Compatible Ideals

A First Definition Of Centers of F-Purity

Definition. Suppose that R is a reduced F-finite ring. We say
that Q € Spec R is a center of F-purity if

@ Forevery f € QRqg and for every e > 0,

@ the map

Ro —= Ré’?
11— £ — (1)
does NOT split.

Note that any minimal prime of the non-strongly F-regular locus is a
center of F-purity.

a1
If you wish to work with triples (R, A, a?), simply replace Fn’gf with
1
(R([(p® —1)A1))g , you also want 1 ——= (af)» not to split for

every a € alt®*~V1_ This provides the notion of centers of sharp
F -purity.
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A Positive Characteristic Analogue of Log Canonical Centers Uniformly F-Compatible Ideals

An Example

Suppose that k is a perfect field of characteristic p > 0.
Consider the ring
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Definitions And First Properties

A Positive Characteristic Analogue of Log Canonical Centers Uniformly F-Compatible Ideals

An Example

Suppose that k is a perfect field of characteristic p > 0.
Consider the ring

R = k[a, b, c]/(a% + abc — b?) = k[xy,x?y,x — y] C K[x,y]
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An Example

Suppose that k is a perfect field of characteristic p > 0.
Consider the ring

R = k[a, b, c]/(a% + abc — b?) = k[xy,x?y,x — y] C K[x,y]

It is easy to verify that this ring is F-pure [Fedder].
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An Example

Suppose that k is a perfect field of characteristic p > 0.
Consider the ring

R = k[a, b, c]/(a% + abc — b?) = k[xy,x?y,x — y] C K[x,y]

It is easy to verify that this ring is F-pure [Fedder].

Its centers of F-purity are exactly the ideals (0), (a, b) and
(a, b, c).
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A Characterization of Centers of F-Purity

Proposition.Suppose that R is a reduced F-finite ring and that
Q € Spec R. Then the following are equivalent:
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A Characterization of Centers of F-Purity

Proposition.Suppose that R is a reduced F-finite ring and that
Q € Spec R. Then the following are equivalent:

(1) Q is a center of F-purity.
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A Characterization of Centers of F-Purity

Proposition.Suppose that R is a reduced F-finite ring and that
Q € Spec R. Then the following are equivalent:

(1) Q is a center of F-purity.
(2) Forevery e > 0 and every map ¢ € Homg,(Ro'/"", Ra),

4((QRQ)7) C QRq.
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A Characterization of Centers of F-Purity

Proposition.Suppose that R is a reduced F-finite ring and that
Q € Spec R. Then the following are equivalent:

(1) Q is a center of F-purity.
(2) Forevery e > 0 and every map ¢ € Homg,(Ro'/"", Ra),
1
¢((QRQ)”) C QRq.
(3) Forevery e > 0 and every map ¢ € Homg(R'/?° R),
1
p(QP°) C Q.
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A Characterization of Centers of F-Purity

Proposition.Suppose that R is a reduced F-finite ring and that
Q € Spec R. Then the following are equivalent:

(1) Q is a center of F-purity.
(2) Forevery e > 0 and every map ¢ € Homg,(Ro'/"", Ra),
i
¢((QR@)") C QRq.
(3) Forevery e > 0 and every map ¢ € Homg(R'/?° R),
1
p(QF°) C Q.

(1) < (2): note that “not splitting” is basically not sending elements of
Q to units. (2) < (3) is straightforward. O]
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A Characterization of Centers of F-Purity

Proposition.Suppose that R is a reduced F-finite ring and that
Q € Spec R. Then the following are equivalent:

(1) Q is a center of F-purity.
(2) Forevery e > 0 and every map ¢ € Homg,(Ro'/"", Ra),
i
¢((QR@)") C QRq.
(3) Forevery e > 0 and every map ¢ € Homg(R'/?° R),
1
p(QF°) C Q.

(1) < (2): note that “not splitting” is basically not sending elements of
Q to units. (2) < (3) is straightforward. O]

@ This generalizes to triples (R, A, at).
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A Better Definition to Work With?

If at first you don’t succeed re“define” success...

Definition. Suppose R is a reduced F-finite ring. We say that
anideal I C R is uniformly F-compatible if
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A Better Definition to Work With?

If at first you don’t succeed re“define” success...

Definition. Suppose R is a reduced F-finite ring. We say that
anideal I C R is uniformly F-compatible if
o forevery e > 0 and
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A Better Definition to Work With?

If at first you don’t succeed re“define” success...

Definition. Suppose R is a reduced F-finite ring. We say that
anideal I C R is uniformly F-compatible if
o forevery e > 0 and

o forevery ¢ € HomR(R#, R),
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A Better Definition to Work With?

If at first you don’t succeed re“define” success...

Definition. Suppose R is a reduced F-finite ring. We say that
anideal I C R is uniformly F-compatible if
o forevery e > 0 and

o forevery ¢ € HomR(R#, R),
@ we have q&(/pie) C .
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A Better Definition to Work With?

If at first you don’t succeed re“define” success...

Definition. Suppose R is a reduced F-finite ring. We say that
anideal I C R is uniformly F-compatible if
o forevery e > 0 and

o forevery ¢ € HomR(R#, R),
@ we have q&(/pie) C .

I'd also like to state this definition for triples (R, A, a!) (where
a C Ris a non-zero ideal and t > 0 is a rational number).
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A Better Definition to Work With?

If at first you don’t succeed re“define” success...

Definition. Suppose R is a reduced F-finite ring. We say that
anideal I C R is uniformly F-compatible if

o forevery e > 0 and

.

o for every ¢ € Homg(R*®, R),

@ we have q&(/pie) C .
I'd also like to state this definition for triples (R, A, a!) (where
a C Ris a non-zero ideal and t > 0 is a rational number).
Definition. Suppose R is a normal F-finite ring. We say that an
ideal / ¢ Ris uniformly (A, o', F)-compatible if for every e > 0

1

and for every ¢ € Homg(R([(p® — 1)A])#°, R), we have
¢((aﬁ(Pe—1ﬂ /)pie) cl.

Karl Schwede A Geometric Characterization of (generalizations of) F-ldeals



Definitions And First Properties

A Positive Characteristic Analogue of Log Canonical Centers Uniformly F-Compatible Ideals

First Observations About Uniformly F-Compatible
ldeals

Consider the following properties of uniformly F-compatible
ideals (analogues hold for various sorts of pairs and triples).
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First Observations About Uniformly F-Compatible
ldeals

Consider the following properties of uniformly F-compatible
ideals (analogues hold for various sorts of pairs and triples).

(1) Any intersection of uniformly F-compatible ideals is uniformly
F-compatible.
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First Observations About Uniformly F-Compatible
ldeals

Consider the following properties of uniformly F-compatible
ideals (analogues hold for various sorts of pairs and triples).

(1) Any intersection of uniformly F-compatible ideals is uniformly
F-compatible.

(2) Any sum of uniformly F-compatible ideals is uniformly
F-compatible.
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First Observations About Uniformly F-Compatible
ldeals

Consider the following properties of uniformly F-compatible
ideals (analogues hold for various sorts of pairs and triples).

(1) Any intersection of uniformly F-compatible ideals is uniformly
F-compatible.

(2) Any sum of uniformly F-compatible ideals is uniformly
F-compatible.

(3) Any radical of a uniformly F-compatible ideal is uniformly
F-compatible.
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First Observations About Uniformly F-Compatible
ldeals

Consider the following properties of uniformly F-compatible
ideals (analogues hold for various sorts of pairs and triples).

(1) Any intersection of uniformly F-compatible ideals is uniformly
F-compatible.

(2) Any sum of uniformly F-compatible ideals is uniformly
F-compatible.

(3) Any radical of a uniformly F-compatible ideal is uniformly
F-compatible.

(4) Any associated prime of a radical uniformly F-compatible ideal is
uniformly F-compatible.
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First Observations About Uniformly F-Compatible
ldeals

Consider the following properties of uniformly F-compatible
ideals (analogues hold for various sorts of pairs and triples).

(1) Any intersection of uniformly F-compatible ideals is uniformly
F-compatible.

(2) Any sum of uniformly F-compatible ideals is uniformly
F-compatible.

(3) Any radical of a uniformly F-compatible ideal is uniformly
F-compatible.

(4) Any associated prime of a radical uniformly F-compatible ideal is
uniformly F-compatible.

(5) Inan F-pure ring if I is uniformly F-compatible, then R// is
F-pure. In particular, / is radical.
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First Observations About Uniformly F-Compatible
ldeals

Consider the following properties of uniformly F-compatible
ideals (analogues hold for various sorts of pairs and triples).

(1) Any intersection of uniformly F-compatible ideals is uniformly
F-compatible.

(2) Any sum of uniformly F-compatible ideals is uniformly
F-compatible.

(3) Any radical of a uniformly F-compatible ideal is uniformly
F-compatible.

(4) Any associated prime of a radical uniformly F-compatible ideal is
uniformly F-compatible.

(5) Inan F-pure ring if I is uniformly F-compatible, then R// is
F-pure. In particular, / is radical.

(6) A prime Q is uniformly F-compatible if and only if Q is a center
of F-purity.
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Finitely Many Uniformly F-Compatible Ideals

The various properties on the previous page, together with the
techniques of [Enescu-Hochster] imply the following

Corollary. If (R, m) is an F-finite local ring and (R, A, a!) is a
sharply F-pure triple, then there are at most finitely many
uniformly (A, al, F)-compatible ideals.

This can also be obtained in the non-pair case by the
techniques of [Sharp].
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Finitely Many Uniformly F-Compatible Ideals

The various properties on the previous page, together with the
techniques of [Enescu-Hochster] imply the following

Corollary. If (R, m) is an F-finite local ring and (R, A, a!) is a
sharply F-pure triple, then there are at most finitely many
uniformly (A, al, F)-compatible ideals.

This can also be obtained in the non-pair case by the
techniques of [Sharp].

It does however suggest the following question.

Question. If R is an F-finite F-pure ring, then are there only
finitely many uniformly F-compatible ideals?
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Aliernate Characterizations of Uniformly F-Compatible
ldeals

Suppose that (S, m) is an F-finite regular local ring and that
R = S/l is a quotient. Suppose that J' C S'is an ideal
containing / and set J = J'/J C R. TFAE:
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Aliernate Characterizations of Uniformly F-Compatible
ldeals

Suppose that (S, m) is an F-finite regular local ring and that
R = S/l is a quotient. Suppose that J' C S'is an ideal
containing / and set J = J'/J C R. TFAE:

(a) Jis uniformly F-compatible.
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Aliernate Characterizations of Uniformly F-Compatible
ldeals

Suppose that (S, m) is an F-finite regular local ring and that
R = S/l is a quotient. Suppose that J' C S'is an ideal
containing / and set J = J'/J C R. TFAE:

(a) Jis uniformly F-compatible.

(b) For every e > 0 and every f € J, the composition

1
fp°
AnnER(J) = ER/JH EF?*) Rp17a ) ER == > RP% R ER

is zero.
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Aliernate Characterizations of Uniformly F-Compatible
ldeals

Suppose that (S, m) is an F-finite regular local ring and that
R = S/l is a quotient. Suppose that J' C S'is an ideal
containing / and set J = J'/J C R. TFAE:

(a) Jis uniformly F-compatible.

(b) For every e > 0 and every f € J, the composition

1

fr®
AnnEF{(J):EIA:.a/J*>E/:;*>Rp17a ®R ER*>>< Rpie ®R EH
is zero.

(c) Forevery e > 0 we have (/P : 1)  (JPP] . J).
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Aliernate Characterizations of Uniformly F-Compatible
ldeals

Suppose that (S, m) is an F-finite regular local ring and that
R = S/l is a quotient. Suppose that J' C S'is an ideal
containing / and set J = J'/J C R. TFAE:

(a) Jis uniformly F-compatible.
(b) For every e > 0 and every f € J, the composition

1
Ann,_:R(J) = ER/J*> EF?*) Rpie ®R ER£> Rpie Qn ER
is zero.
(c) Forevery e > 0 we have (/P : 1)  (JPP] . J).
(d) Anng.(J) is an F(Egr)-submodules of Eg.
[Lyubeznik-Smith]
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Aliernate Characterizations of Uniformly F-Compatible
ldeals

Suppose that (S, m) is an F-finite regular local ring and that
R = S/l is a quotient. Suppose that J' C S'is an ideal
containing / and set J = J'/J C R. TFAE:

(a) Jis uniformly F-compatible.
(b) For every e > 0 and every f € J, the composition

1
Ann,_:R(J) = ER/J*> EF?*) Rpie ®R ER£> Rpie Qn ER
is zero.
(c) Forevery e > 0 we have (/P : 1)  (JPP] . J).
(d) Anng.(J) is an F(Egr)-submodules of Eg.
[Lyubeznik-Smith]

Condition (b) generalizes to triples (R, A, a!), condition (c)
generalizes to pairs (R, a!).
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Deeper properties and results related to F-adjunction

. New Results in Characteristic Zero
Applications

Outline

0 Applications
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Deeper properties and results related to F-adjunction

. New Results in Characteristic Zero
Applications

Many Common Ideals are Uniformly F-Compatible

Suppose that R is an F-finite reduced ring.

The previous results also hold for pairs/triples (where
appropriate)
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Deeper properties and results related to F-adjunction

. New Results in Characteristic Zero
Applications

Many Common Ideals are Uniformly F-Compatible

Suppose that R is an F-finite reduced ring.
@ The test ideal 7(R) is uniformly F-compatible.

The previous results also hold for pairs/triples (where
appropriate)
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Deeper properties and results related to F-adjunction

. New Results in Characteristic Zero
Applications

Many Common Ideals are Uniformly F-Compatible

Suppose that R is an F-finite reduced ring.
@ The test ideal 7(R) is uniformly F-compatible.

o If Ris F-pure, then the conductor is uniformly
F-compatible.

The previous results also hold for pairs/triples (where
appropriate)
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Deeper properties and results related to F-adjunction

. New Results in Characteristic Zero
Applications

Many Common Ideals are Uniformly F-Compatible

Suppose that R is an F-finite reduced ring.
@ The test ideal 7(R) is uniformly F-compatible.

o If Ris F-pure, then the conductor is uniformly
F-compatible.

o If /is an annihilator of any F-stable submodule of HI(R),
then /is uniformly F-compatible.

The previous results also hold for pairs/triples (where
appropriate)

Karl Schwede

A Geometric Characterization of (generalizations of) F-ldeals



Deeper properties and results related to F-adjunction

. New Results in Characteristic Zero
Applications

Many Common Ideals are Uniformly F-Compatible

Suppose that R is an F-finite reduced ring.
@ The test ideal 7(R) is uniformly F-compatible.
o If Ris F-pure, then the conductor is uniformly
F-compatible.

o If /is an annihilator of any F-stable submodule of HI(R),
then /is uniformly F-compatible.

o If Ris F-pure and local, then the splitting prime P, see
[Aberbach-Enescul], is uniformly F-compatible

The previous results also hold for pairs/triples (where
appropriate)

Karl Schwede A Geometric Characterization of (generalizations of) F-ldeals



Deeper properties and results related to F-adjunction

. New Results in Characteristic Zero
Applications

Many Common Ideals are Uniformly F-Compatible

Suppose that R is an F-finite reduced ring.
@ The test ideal 7(R) is uniformly F-compatible.
o If Ris F-pure, then the conductor is uniformly
F-compatible.
o If /is an annihilator of any F-stable submodule of HI(R),
then /is uniformly F-compatible.

o If Ris F-pure and local, then the splitting prime P, see
[Aberbach-Enescul], is uniformly F-compatible

o In fact, in this case, the splitting prime is the unique largest
uniformly F-compatible proper ideal.

The previous results also hold for pairs/triples (where
appropriate)
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Deeper properties and results related to F-adjunction

. New Results in Characteristic Zero
Applications

Even More Ideals are Uniformly F-Compatible
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Deeper properties and results related to F-adjunction

. New Results in Characteristic Zero
Applications

Even More Ideals are Uniformly F-Compatible

@ The non-finitistic/big test ideal 7(R) = 7p(R) is uniformly
F-compatible.
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Deeper properties and results related to F-adjunction

. New Results in Characteristic Zero
Applications

Even More Ideals are Uniformly F-Compatible

@ The non-finitistic/big test ideal 7(R) = 7p(R) is uniformly
F-compatible.
o Infact, it is the smallest uniformly F-compatible ideal that
contains an element of R°.
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Deeper properties and results related to F-adjunction

. New Results in Characteristic Zero
Applications

Even More Ideals are Uniformly F-Compatible

@ The non-finitistic/big test ideal 7(R) = 7p(R) is uniformly
F-compatible.

o Infact, it is the smallest uniformly F-compatible ideal that
contains an element of R°.

o If (R,A)isapairand 7 : Y — Spec R is a proper birational
map with Y normal, then for any effective divisor Gon Y
such that 7.0y (|Ky — m*(Kg + A) + G]) C OSpec R, WE
have that (the global sections of)
m.0y([Ky — m*(Kg + A) + GJ) is uniformly
(A, F)-compatible.
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Deeper properties and results related to F-adjunction

. New Results in Characteristic Zero
Applications

Even More Ideals are Uniformly F-Compatible

@ The non-finitistic/big test ideal 7(R) = 7p(R) is uniformly
F-compatible.

o Infact, it is the smallest uniformly F-compatible ideal that
contains an element of R°.

o If (R,A)isapairand 7 : Y — Spec R is a proper birational
map with Y normal, then for any effective divisor Gon Y
such that 7.0y (|Ky — m*(Kg + A) + G]) C Ospec R, WE
have that (the global sections of)
m.0y([Ky — m*(Kg + A) + GJ) is uniformly
(A, F)-compatible.

o In particular, the multiplier ideal 7 (A) is uniformly
(A, F)-compatible (as is the adjoint ideal).
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Deeper properties and results related to F-adjunction

. New Results in Characteristic Zero
Applications

Even More Ideals are Uniformly F-Compatible

@ The non-finitistic/big test ideal 7(R) = 7p(R) is uniformly
F-compatible.

o Infact, it is the smallest uniformly F-compatible ideal that
contains an element of R°.

o If (R,A)isapairand 7 : Y — Spec R is a proper birational
map with Y normal, then for any effective divisor Gon Y
such that 7.0y (|Ky — m*(Kg + A) + G]) C Ospec R, WE
have that (the global sections of)
m.0y([Ky — m*(Kg + A) + GJ) is uniformly
(A, F)-compatible.

o In particular, the multiplier ideal 7 (A) is uniformly
(A, F)-compatible (as is the adjoint ideal).

o Any center of log canonicity for (R, A) reduced generically
from characteristic zero is uniformly (A, F)-compatible.
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Deeper properties and results related to F-adjunction

. New Results in Characteristic Zero
Applications

Additional Relations to Test Ideals

The relation to the test ideal (mentioned on the previous page)
should not be surprising.
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Deeper properties and results related to F-adjunction

. New Results in Characteristic Zero
Applications

Additional Relations to Test Ideals

The relation to the test ideal (mentioned on the previous page)
should not be surprising.
@ In [Lyubeznik-Smith], the authors showed that if R = S// is
a domain where S is a regular local ring, then the big test
ideal 75 corresponds to the smallest ideal J O [ which
satisfies (/P : 1) C (JIP] . J) for all e > 0.
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Deeper properties and results related to F-adjunction

. New Results in Characteristic Zero
Applications

Additional Relations to Test Ideals

The relation to the test ideal (mentioned on the previous page)
should not be surprising.
@ In [Lyubeznik-Smith], the authors showed that if R = S// is
a domain where S is a regular local ring, then the big test
ideal 75 corresponds to the smallest ideal J O [ which
satisfies (/P : 1) C (JIP] . J) for all e > 0.
@ In [Blickle-Mustata-Smith], the authors show that if R is
regular, then the test ideal 7(a!) is the smallest ideal J such
that al°1 C JIP°] for all e > 0.
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Deeper properties and results related to F-adjunction

. New Results in Characteristic Zero
Applications

Additional Relations to Test Ideals

The relation to the test ideal (mentioned on the previous page)
should not be surprising.
@ In [Lyubeznik-Smith], the authors showed that if R = S// is
a domain where S is a regular local ring, then the big test
ideal 75 corresponds to the smallest ideal J O [ which
satisfies (/P : 1) C (JIP] . J) for all e > 0.
@ In [Blickle-Mustata-Smith], the authors show that if R is
regular, then the test ideal 7(a!) is the smallest ideal J such
that al°1 C JIP°] for all e > 0.
@ We just explained that if R = S// and a is an ideal of S.
Then the big test ideal 7(a!) corresponds to the smallest
ideal J O [ which satisfies

altE* =D .y < (JPT - ).

for all e > 0.
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Deeper properties and results related to F-adjunction

. New Results in Characteristic Zero
Applications

Results Related to F-Adjunction

Some of these have been mentioned before, but I'd like to
repeat them. Suppose that (R, A, a!) is a triple.
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Deeper properties and results related to F-adjunction

. New Results in Characteristic Zero
Applications

Results Related to F-Adjunction

Some of these have been mentioned before, but I'd like to
repeat them. Suppose that (R, A, a!) is a triple.
o If Iis uniformly (A, a!, F)-compatible, and if J O /
corresponds to to a uniformly F-compatible ideal of R//,
then J is also uniformly (A, a!, F)-compatible.
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Deeper properties and results related to F-adjunction

. New Results in Characteristic Zero
Applications

Results Related to F-Adjunction

Some of these have been mentioned before, but I'd like to
repeat them. Suppose that (R, A, a!) is a triple.

o If Iis uniformly (A, a!, F)-compatible, and if J O /
corresponds to to a uniformly F-compatible ideal of R//,
then J is also uniformly (A, a!, F)-compatible.

o If Iis a proper uniformly (A, af, F)-compatible ideal that is
maximal with respect to containment (among uniformly
compatible ideals), then R// is strongly F-regular.
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Deeper properties and results related to F-adjunction

. New Results in Characteristic Zero
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Results Related to F-Adjunction

Some of these have been mentioned before, but I'd like to
repeat them. Suppose that (R, A, a!) is a triple.

o If Iis uniformly (A, a!, F)-compatible, and if J O /
corresponds to to a uniformly F-compatible ideal of R//,
then J is also uniformly (A, a!, F)-compatible.

o If Iis a proper uniformly (A, af, F)-compatible ideal that is
maximal with respect to containment (among uniformly
compatible ideals), then R// is strongly F-regular.

o If (R, A, ") is local but not sharply F-pure, then the
maximal such ideal with respect to containment is m.
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Deeper properties and results related to F-adjunction

. New Results in Characteristic Zero
Applications

Results Related to F-Adjunction

Some of these have been mentioned before, but I'd like to
repeat them. Suppose that (R, A, a!) is a triple.

o If Iis uniformly (A, a!, F)-compatible, and if J O /
corresponds to to a uniformly F-compatible ideal of R//,
then J is also uniformly (A, a!, F)-compatible.

o If Iis a proper uniformly (A, af, F)-compatible ideal that is
maximal with respect to containment (among uniformly
compatible ideals), then R// is strongly F-regular.

o If (R, A, ") is local but not sharply F-pure, then the
maximal such ideal with respect to containment is m.
o If /is uniformly (A, a!, F)-compatible and (R, A, a!) is
sharply F-pure, then R/l is F-pure.
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Deeper properties and results related to F-adjunction

. New Results in Characteristic Zero
Applications

Results Related to F-Adjunction

Some of these have been mentioned before, but I'd like to
repeat them. Suppose that (R, A, a!) is a triple.

o If /is uniformly (A, a!, F)-compatible, and if J > /
corresponds to to a uniformly F-compatible ideal of R//,
then J is also uniformly (A, a!, F)-compatible.

o If Iis a proper uniformly (A, af, F)-compatible ideal that is
maximal with respect to containment (among uniformly
compatible ideals), then R// is strongly F-regular.

o If (R, A, ") is local but not sharply F-pure, then the
maximal such ideal with respect to containment is m.

o If /s uniformly (A, af, F)-compatible and (R, A, af) is
sharply F-pure, then R/l is F-pure.

o I'd like to try to lift this result to characteristic zero.
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Deeper properties and results related to F-adjunction

. New Results in Characteristic Zero
Applications

R/l 'is of Dense F-Pure Type

In fact, the result does lift. Suppose that R is a ring of finite type
over C.

Theorem. Suppose that (R, A) has dense F-pure type (which
is conjecturally equivalent to being log canonical) and | is an
intersection of centers of log canonicity (a scheme-theoretic
union). Then R/I also has dense F-pure type (in particular it
has Du Bois singularities).

Proof.

Reduce (R, A) together with / and a log resolution, to a family
of characteristic p > 0 models. The ideals {/,} in the family
corresponding to / are uniformly (Ap, F)-compatible (this can
be seen in several ways). Thus R/, is F-pure for an infinite
set of p. O

4
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Deeper properties and results related to F-adjunction

. New Results in Characteristic Zero
Applications

Happy Birthday Mel

Happy Birthday Mel!

"two days belated Happy Birthday Mel!
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