Background and Definitions A Positive Characteristic Analogue of Log Canonical Centers Applications

> A Geometric Characterization of (generalizations of) *F*-Ideals Centers of *F*-purity

> > Karl Schwede¹

¹Department of Mathematics University of Michigan

Commutative Algebra and its Interactions A conference in honor of Mel Hochster, 2008 Background and Definitions A Positive Characteristic Analogue of Log Canonical Centers Applications

Outline

Background and Definitions

- Characteristic *p* > 0 singularities
- Log Canonical Centers
- Properties of log canonical centers

A Positive Characteristic Analogue of Log Canonical Centers

- Definitions And First Properties
- Uniformly F-Compatible Ideals

3 Applications

- Deeper properties and results related to *F*-adjunction
- New Results in Characteristic Zero

A Positive Characteristic Analogue of Log Canonical Centers Applications

Outline

1

Characteristic p > 0 singularities Log Canonical Centers Properties of log canonical centers

Background and Definitions

- Characteristic *p* > 0 singularities
- Log Canonical Centers
- Properties of log canonical centers

2 A Positive Characteristic Analogue of Log Canonical Centers

- Definitions And First Properties
- Uniformly F-Compatible Ideals

3 Applications

- Deeper properties and results related to *F*-adjunction
- New Results in Characteristic Zero

Background and Definitions Characteristic p > 0 singularities A Positive Characteristic Analogue of Log Canonical Centers Log Canonical Centers Applications Properties of log canonical centers Summary Summary

- Link a notion from characteristic zero (called *log canonical centers / centers of log canonicity*), with (generalizations of) *annihilators of F-stable submodules of local cohomology*.
 - A submodule N ⊂ H^d_m(R) is called F-stable if F(N) ⊆ N under the Frobenius map F : H^d_m(R) → H^d_m(R).
- Use this connection as inspiration and a tool to prove new results about both sorts of objects.

- Link a notion from characteristic zero (called *log canonical* centers / centers of *log canonicity*), with (generalizations of) annihilators of *F*-stable submodules of *local* cohomology.
 - A submodule $N \subset H^d_{\mathfrak{m}}(R)$ is called *F*-stable if $F(N) \subseteq N$ under the Frobenius map $F : H^d_{\mathfrak{m}}(R) \to H^d_{\mathfrak{m}}(R)$.
- Use this connection as inspiration and a tool to prove new results about both sorts of objects.

- Link a notion from characteristic zero (called *log canonical* centers / centers of *log canonicity*), with (generalizations of) annihilators of *F*-stable submodules of *local* cohomology.
 - A submodule N ⊂ H^d_m(R) is called *F*-stable if F(N) ⊆ N under the Frobenius map F : H^d_m(R) → H^d_m(R).
- Use this connection as inspiration and a tool to prove new results about both sorts of objects.

< □ > < 同 > < 三 > <

- Link a notion from characteristic zero (called *log canonical* centers / centers of *log canonicity*), with (generalizations of) annihilators of *F*-stable submodules of *local* cohomology.
 - A submodule N ⊂ H^d_m(R) is called *F*-stable if F(N) ⊆ N under the Frobenius map F : H^d_m(R) → H^d_m(R).
- Use this connection as inspiration and a tool to prove new results about both sorts of objects.

ヘロト ヘ戸ト ヘヨト ヘ

A Positive Characteristic Analogue of Log Canonical Centers Applications Characteristic p > 0 singularities Log Canonical Centers Properties of log canonical centers

Universal Assumptions

- All rings are reduced.
- All rings of characteristic zero are essentially of finite type over C (where C is your favorite field of characteristic zero).
- All rings of positive characteristic are F-finite
 - (that is, if *R* is viewed as an *R*-module via the action of Frobenius, it is a finite *R*-module).
 - (in other words, $R^{\frac{1}{p}}$ is a finite *R*-module).

Characteristic p > 0 singularities Log Canonical Centers Properties of log canonical centers

A Positive Characteristic Analogue of Log Canonical Centers Applications

Some Definitions

All rings are assumed to be *F*-finite of characteristic p > 0. Let $\mathfrak{a} \subset R$ be an ideal with $\mathfrak{a} \cap R^{\circ} \neq 0$ and suppose that t > 0 is a positive number.

- A ring is called *F*-pure if the Frobenius map $R \to R^{\overline{p^{\theta}}}$ splits.
- A pair (R, a^t) is called sharply F-pure if there exists an integer e > 0 and an a ∈ a^{⌈t(p^e-1)⌉} such that the map

$$R \longrightarrow R^{\frac{1}{p^e}} \xrightarrow{\times a^{\frac{1}{p^e}}} R^{\frac{1}{p^e}}$$

splits.

There exist definitions for pairs (R, Δ) also.

ヘロト ヘヨト ヘヨト

Background and Definitions A Positive Characteristic Analogue of Log Canonical Centers Applications Characteristic p > 0 singularities Log Canonical Centers Properties of log canonical centers

Some Definitions *F*-pure rings and pairs

All rings are assumed to be *F*-finite of characteristic p > 0. Let $\mathfrak{a} \subset R$ be an ideal with $\mathfrak{a} \cap R^{\circ} \neq 0$ and suppose that t > 0 is a positive number.

- A ring is called *F*-*pure* if the Frobenius map *R* → *R*^{1/pe}/_{pe} splits.
- A pair (R, a^t) is called sharply F-pure if there exists an integer e > 0 and an a ∈ a^{⌈t(p^e-1)⌉} such that the map

$$R \longrightarrow R^{\frac{1}{p^e}} \xrightarrow{\times a^{\frac{1}{p^e}}} R^{\frac{1}{p^e}}$$

splits.

There exist definitions for pairs (R, Δ) also.

ヘロト ヘヨト ヘヨト

Background and Definitions A Positive Characteristic Analogue of Log Canonical Centers Applications Characteristic p > 0 singularitiesLog Canonical CentersProperties of log canonical centers

Some Definitions *F*-pure rings and pairs

All rings are assumed to be *F*-finite of characteristic p > 0. Let $a \subset R$ be an ideal with $a \cap R^{\circ} \neq 0$ and suppose that t > 0 is a positive number.

- A ring is called *F*-pure if the Frobenius map $R \to R^{\frac{1}{p^e}}$ splits.
- A pair (R, a^t) is called *sharply F-pure* if there exists an integer e > 0 and an a ∈ a^{⌈t(p^e-1)⌉} such that the map

$$R \longrightarrow R^{\frac{1}{p^e}} \xrightarrow{\times a^{\frac{1}{p^e}}} R^{\frac{1}{p^e}}$$

splits.

There exist definitions for pairs (R, Δ) also.

A Positive Characteristic Analogue of Log Canonical Centers Applications Characteristic p > 0 singularities Log Canonical Centers Properties of log canonical centers

Some Definitions Part 2 *F*-regular rings and pairs

Same assumptions as before.

A ring *R* is called *strongly F-regular* if for every *c* ∈ *R*°, there exists an *e* > 0 such that the map

$$R \longrightarrow R^{\frac{1}{p^e}} \xrightarrow{\times c^{\frac{1}{p^e}}} R^{\frac{1}{p^e}}$$

splits.

A pair (*R*, a^t) is called *strongly F-regular* if for ever *c* ∈ *R*°, there exists an *e* > 0 and *a* ∈ a^[t(p^e-1)] such that the map

$$R \longrightarrow R^{\frac{1}{p^e} \times (ca)^{\frac{1}{p^e}}} R^{\frac{1}{p^e}}$$

splits.

A Positive Characteristic Analogue of Log Canonical Centers Applications Characteristic p > 0 singularities Log Canonical Centers Properties of log canonical centers

Some Definitions Part 2 *F*-regular rings and pairs

Same assumptions as before.

A ring *R* is called *strongly F-regular* if for every *c* ∈ *R*°, there exists an *e* > 0 such that the map

$$R \longrightarrow R^{\frac{1}{p^e}} \xrightarrow{\times c^{\frac{1}{p^e}}} R^{\frac{1}{p^e}}$$

splits.

A pair (*R*, a^t) is called *strongly F-regular* if for ever *c* ∈ *R*°, there exists an *e* > 0 and *a* ∈ a^[t(p^e-1)] such that the map

$$R \longrightarrow R^{\frac{1}{p^e} \times (ca)^{\frac{1}{p^e}}} R^{\frac{1}{p^e}}$$

splits.

A Positive Characteristic Analogue of Log Canonical Centers Applications Characteristic p > 0 singularities Log Canonical Centers Properties of log canonical centers

Some Definitions Part 2 *F*-regular rings and pairs

Same assumptions as before.

A ring *R* is called *strongly F-regular* if for every *c* ∈ *R*°, there exists an *e* > 0 such that the map

$$R \longrightarrow R^{\frac{1}{p^e}} \xrightarrow{\times c^{\frac{1}{p^e}}} R^{\frac{1}{p^e}}$$

splits.

A pair (*R*, a^t) is called *strongly F-regular* if for ever *c* ∈ *R*°, there exists an *e* > 0 and *a* ∈ a^[t(p^e-1)] such that the map

$$R \longrightarrow R^{\frac{1}{p^e} \times (ca)^{\frac{1}{p^e}}} R^{\frac{1}{p^e}}$$

splits.

< □ > < 同 > < 臣 > < 臣

A Positive Characteristic Analogue of Log Canonical Centers Applications Characteristic p > 0 singularities Log Canonical Centers Properties of log canonical centers

Some More Definitions

Same assumptions as before.

Given an ideal *I* ⊂ *R*, the α^t-tight closure of *I*, (denoted *I*^{*α^t}) is defined as

 $\{x \in R | \exists c \in R^{\circ}, \text{ such that for all } e \gg 0, ca^{\lceil t(p^e-1) \rceil} x^{p^e} \in I^{[p^e]} \}.$

 Given a module N ⊆ M, the a^t-tight closure of N in M, (denoted N^{*a^t}_M) is defined as

 $\{z \in M | \exists c \in R^{\circ}, \text{such that for all } e \gg 0, c^{\frac{1}{p^{e}}} \mathfrak{a}^{\frac{\lceil t(p^{e}-1) \rceil}{p^{e}}} z^{p^{e}} \in N_{M}^{[p^{e}]} \}.$

Here z^{p^e} is defined to be the image of z via the map $M \to R^{\frac{1}{p^e}} \otimes_R M$ and $N^{[p^e]}_M$ is defined to be the image of $R^{\frac{1}{p^e}} \otimes_R N$ inside $R^{\frac{1}{p^e}} \otimes_R M$.

A Positive Characteristic Analogue of Log Canonical Centers Applications Characteristic $\rho > 0$ singularitiesLog Canonical CentersProperties of log canonical centers

Some More Definitions Tight Closure

Same assumptions as before.

Given an ideal *I* ⊂ *R*, the a^t-tight closure of *I*, (denoted *I*^{*a^t}) is defined as

 $\{x \in R | \exists c \in R^{\circ}, \text{ such that for all } e \gg 0, ca^{\lceil t(p^e-1) \rceil} x^{p^e} \in I^{[p^e]} \}.$

 Given a module N ⊆ M, the a^t-tight closure of N in M, (denoted N^{*a^t}_M) is defined as

 $\{z \in M | \exists c \in R^{\circ}, \text{such that for all } e \gg 0, c^{\frac{1}{p^{\theta}}}\mathfrak{a}^{\frac{\lceil l(p^{\theta}-1)\rceil}{p^{\theta}}} z^{p^{\theta}} \in N_{M}^{[p^{\theta}]} \}.$

Here z^{p^e} is defined to be the image of z via the map $M \to R^{\frac{1}{p^e}} \otimes_R M$ and $N^{[p^e]}_M$ is defined to be the image of $R^{\frac{1}{p^e}} \otimes_R N$ inside $R^{\frac{1}{p^e}} \otimes_R M$.

A Positive Characteristic Analogue of Log Canonical Centers Applications Characteristic p > 0 singularities Log Canonical Centers Properties of log canonical centers

Some More Definitions

Same assumptions as before.

Given an ideal *I* ⊂ *R*, the a^t-tight closure of *I*, (denoted *I*^{*a^t}) is defined as

 $\{x \in R | \exists c \in R^{\circ}, \text{such that for all } e \gg 0, ca^{\lceil t(p^e-1) \rceil} x^{p^e} \in I^{[p^e]} \}.$

 Given a module N ⊆ M, the a^t-tight closure of N in M, (denoted N^{*a^t}_M) is defined as

 $\{z \in M | \exists c \in R^{\circ}, \text{such that for all } e \gg 0, c^{\frac{1}{p^{e}}}\mathfrak{a}^{\frac{\lceil t(p^{e}-1)\rceil}{p^{e}}} z^{p^{e}} \in N_{M}^{[p^{e}]}\}.$

Here z^{p^e} is defined to be the image of z via the map $M \to R^{\frac{1}{p^e}} \otimes_R M$ and $N_M^{[p^e]}$ is defined to be the image of $R^{\frac{1}{p^e}} \otimes_R N$ inside $R^{\frac{1}{p^e}} \otimes_R M$.

A Positive Characteristic Analogue of Log Canonical Centers Applications Characteristic p > 0 singularities Log Canonical Centers Properties of log canonical centers

Even More Definitions Test Ideals

We keep on with the same assumptions.

The test ideal τ(a^t) is defined to be the set of elements
 c ∈ R such that for every x ∈ l^{*a^t} we have that

$$c\mathfrak{a}^{\lceil t(p^e-1)\rceil}x^{p^e} \in I^{[p^e]}$$

for all $e \ge 0$.

• The *big/non-finitistic test ideal* $\tilde{\tau}(\mathfrak{a}^t) = \tau_b(\mathfrak{a}^t)$ is defined to be the set of elements $c \in R$ such that for every $z \in N_M^{*\mathfrak{a}^t}$ we have that

$$c^{\frac{1}{p^e}}\mathfrak{a}^{\frac{\lceil t(p^e-1)\rceil}{p^e}}z^{p^e}\in N_M^{[p^e]}$$

for all $e \ge 0$.

A Positive Characteristic Analogue of Log Canonical Centers Applications Characteristic p > 0 singularities Log Canonical Centers Properties of log canonical centers

Even More Definitions Test Ideals

We keep on with the same assumptions.

The *test ideal* τ(a^t) is defined to be the set of elements c ∈ R such that for every x ∈ I^{*a^t} we have that

$$c\mathfrak{a}^{\lceil t(p^e-1)\rceil}x^{p^e}\in I^{[p^e]}$$

for all $e \ge 0$.

• The *big/non-finitistic test ideal* $\tilde{\tau}(\mathfrak{a}^t) = \tau_b(\mathfrak{a}^t)$ is defined to be the set of elements $c \in R$ such that for every $z \in N_M^{*\mathfrak{a}^t}$ we have that

$$\boldsymbol{c}^{\frac{1}{p^{e}}}\mathfrak{a}^{\frac{\lceil t(p^{e}-1)\rceil}{p^{e}}}\boldsymbol{z}^{p^{e}}\in N_{M}^{[p^{e}]}$$

for all $e \ge 0$.

A Positive Characteristic Analogue of Log Canonical Centers Applications Characteristic p > 0 singularities Log Canonical Centers Properties of log canonical centers

Even More Definitions Test Ideals

We keep on with the same assumptions.

The *test ideal* τ(a^t) is defined to be the set of elements c ∈ R such that for every x ∈ I^{*a^t} we have that

$$c\mathfrak{a}^{\lceil t(p^e-1)\rceil}x^{p^e} \in I^{[p^e]}$$

for all $e \ge 0$.

The *big/non-finitistic test ideal* τ̃(a^t) = τ_b(a^t) is defined to be the set of elements c ∈ R such that for every z ∈ N_M^{*a^t} we have that

$$c^{rac{1}{p^e}}\mathfrak{a}^{rac{\lceil t(p^e-1)
ceil}{p^e}}z^{p^e}\in N_M^{[p^e]}$$

for all $e \ge 0$.

A Positive Characteristic Analogue of Log Canonical Centers Applications Characteristic p > 0 singularities Log Canonical Centers Properties of log canonical centers

The Final Definition

in positive characteristic

A ring *R* is said to be *F*-injective if for every maximal ideal m ∈ m − Spec *R*, the induced Frobenius map on local cohomology

$$H^i_{\mathfrak{m}}(R_{\mathfrak{m}}) o H^i_{\mathfrak{m}}(R_{\mathfrak{m}})$$

is injective for every $i \ge 0$.

A Positive Characteristic Analogue of Log Canonical Centers Applications Characteristic p > 0 singularities Log Canonical Centers Properties of log canonical centers

The Final Definition

A ring *R* is said to be *F*-*injective* if for every maximal ideal m ∈ m − Spec *R*, the induced Frobenius map on local cohomology

$$H^{i}_{\mathfrak{m}}(R_{\mathfrak{m}}) o H^{i}_{\mathfrak{m}}(R_{\mathfrak{m}})$$

is injective for every $i \ge 0$.

A Positive Characteristic Analogue of Log Canonical Centers Applications Characteristic p > 0 singularities Log Canonical Centers Properties of log canonical centers

A Review of the Dictionary

F-singularities vs singularities in birational geometry

- Begin with a pair (R, Δ) where R is a normal domain of finite type over C and Δ is an effective Q-divisor on X = Spec R
 - (∆ is a formal sum prime divisors on *X* with nonnegative rational coefficients.)
- Assume that $K_X + \Delta$ is Q-Cartier, if $\Delta = 0$ this means *R* is Q-Gorenstein
 - (For some integer n > 0, $\mathcal{O}_X(n(K_R + \Delta))$ is a locally free)
- Reduce generically to characteristic *p*.

Positive Characteristic		Characteristic Zero
Test Ideals, $\tau(\Delta)$	\iff	Multiplier Ideals, $\mathcal{J}(\Delta)$
F-Pure Singularities	\implies	Log Canonical Singularities
Strongly <i>F</i> -Regular Singularities	\iff	Log Terminal Singularities
F-Injective Singularities	\implies	Du Bois Singularities
		・ロト・(部・・モト・モト・モード

A Positive Characteristic Analogue of Log Canonical Centers Applications Characteristic p > 0 singularities Log Canonical Centers Properties of log canonical centers

A Review of the Dictionary

F-singularities vs singularities in birational geometry

- Begin with a pair (R, Δ) where R is a normal domain of finite type over C and Δ is an effective Q-divisor on X = Spec R
 - (Δ is a formal sum prime divisors on X with nonnegative rational coefficients.)
- Assume that $K_X + \Delta$ is Q-Cartier, if $\Delta = 0$ this means *R* is Q-Gorenstein
 - (For some integer n > 0, $\mathcal{O}_X(n(K_R + \Delta))$ is a locally free)
- Reduce generically to characteristic *p*.

Positive Characteristic		Characteristic Zero
Test Ideals, $\tau(\Delta)$	\iff	Multiplier Ideals, $\mathcal{J}(\Delta)$
F-Pure Singularities	\implies	Log Canonical Singularities
Strongly <i>F</i> -Regular Singularities	\iff	Log Terminal Singularities
F-Injective Singularities	\implies	Du Bois Singularities
		・ロト・西ト・ヨト・ヨト ヨード

A Positive Characteristic Analogue of Log Canonical Centers Applications Characteristic p > 0 singularities Log Canonical Centers Properties of log canonical centers

A Review of the Dictionary

F-singularities vs singularities in birational geometry

- Begin with a pair (R, Δ) where R is a normal domain of finite type over C and Δ is an effective Q-divisor on X = Spec R
 - (Δ is a formal sum prime divisors on X with nonnegative rational coefficients.)
- Assume that $K_X + \Delta$ is \mathbb{Q} -Cartier, if $\Delta = 0$ this means R is \mathbb{Q} -Gorenstein

• (For some integer n > 0, $\mathcal{O}_X(n(K_R + \Delta))$ is a locally free)

• Reduce generically to characteristic *p*.

Positive Characteristic		Characteristic Zero
Test Ideals, $\tau(\Delta)$	\iff	Multiplier Ideals, $\mathcal{J}(\Delta)$
F-Pure Singularities	\implies	Log Canonical Singularities
Strongly <i>F</i> -Regular Singularities	\iff	Log Terminal Singularities
F-Injective Singularities	\implies	Du Bois Singularities

A Positive Characteristic Analogue of Log Canonical Centers Applications Characteristic p > 0 singularities Log Canonical Centers Properties of log canonical centers

A Review of the Dictionary

F-singularities vs singularities in birational geometry

- Begin with a pair (R, Δ) where R is a normal domain of finite type over C and Δ is an effective Q-divisor on X = Spec R
 - (Δ is a formal sum prime divisors on X with nonnegative rational coefficients.)
- Assume that $K_X + \Delta$ is \mathbb{Q} -Cartier, if $\Delta = 0$ this means R is \mathbb{Q} -Gorenstein
 - (For some integer n > 0, $\mathcal{O}_X(n(K_R + \Delta))$ is a locally free)
- Reduce generically to characteristic *p*.

Positive Characteristic		Characteristic Zero
Test Ideals, $\tau(\Delta)$	\iff	Multiplier Ideals, $\mathcal{J}(\Delta)$
F-Pure Singularities	\implies	Log Canonical Singularities
Strongly <i>F</i> -Regular Singularities	\iff	Log Terminal Singularities
F-Injective Singularities	\implies	Du Bois Singularities

A Positive Characteristic Analogue of Log Canonical Centers Applications Characteristic p > 0 singularities Log Canonical Centers Properties of log canonical centers

A Review of the Dictionary

F-singularities vs singularities in birational geometry

- Begin with a pair (R, Δ) where R is a normal domain of finite type over C and Δ is an effective Q-divisor on X = Spec R
 - (Δ is a formal sum prime divisors on X with nonnegative rational coefficients.)
- Assume that $K_X + \Delta$ is \mathbb{Q} -Cartier, if $\Delta = 0$ this means R is \mathbb{Q} -Gorenstein
 - (For some integer n > 0, $\mathcal{O}_X(n(K_R + \Delta))$ is a locally free)
- Reduce generically to characteristic p.

Positive Characteristic		Characteristic Zero
Test Ideals, $\tau(\Delta)$	\iff	Multiplier Ideals, $\mathcal{J}(\Delta)$
F-Pure Singularities	\implies	Log Canonical Singularities
Strongly <i>F</i> -Regular Singularities	\iff	Log Terminal Singularities
F-Injective Singularities	\implies	Du Bois Singularities

Background and Definitions A Positive Characteristic Analogue of Log Canonical Centers Applications Characteristic p > 0 singularities Log Canonical Centers Properties of log canonical centers

An Informal Definition of Log Canonical Centers

Suppose that (R, Δ) is log canonical. (If you want to assume that there is no Δ , that's ok)

- Roughly speaking, we say that Q ∈ Spec R (not necessarily a maximal ideal) is a *log canonical center* if
- the pair (R_Q, Δ_Q) is only "barely" log canonical
 - (R_Q, Δ_Q) is just the pair (R, Δ) localized at Q.

Recall: -	Positive Characteristic		Characteristic Zero
	F-Pure Singularities	\Rightarrow	Log Canonical Singularities

イロト (過) (ほ) (ほ)

An Informal Definition of Log Canonical Centers

Suppose that (R, Δ) is log canonical. (If you want to assume that there is no Δ , that's ok)

- Roughly speaking, we say that Q ∈ Spec R (not necessarily a maximal ideal) is a *log canonical center* if
- the pair (R_Q, Δ_Q) is only "barely" log canonical

• (R_Q, Δ_Q) is just the pair (R, Δ) localized at Q.

Recall: -	Positive Characteristic		Characteristic Zero
	F-Pure Singularities	\Rightarrow	Log Canonical Singularities

Background and Definitions A Positive Characteristic Analogue of Log Canonical Centers Characteristic p > 0 singularities Log Canonical Centers Properties of log canonical centers

The Definition of Centers of Log Canonicity aka Log Canonical Centers

Applications

Choose $Q \in \operatorname{Spec} R$. We say that Q is a

center of log canonicity / log canonical center /non-log terminal center

- for the pair (R, Δ) , *IF*
 - For every element $f \in Q$,
 - and every $\epsilon > 0$,
 - the pair (R, Δ + ε div(f)) is NOT log canonical at Q (at the local ring/stalk),

this is the same as

- the triple $(R_Q, \Delta_Q, f^{\epsilon})$ is *NOT* log canonical
- if ∆ = 0, this is just the same as saying that (R_Q, f^c) is NOT log canonical

A Positive Characteristic Analogue of Log Canonical Centers Applications Characteristic p > 0 singularities Log Canonical Centers Properties of log canonical centers

The Definition of Centers of Log Canonicity aka Log Canonical Centers

Choose $Q \in \operatorname{Spec} R$. We say that Q is a

center of log canonicity / log canonical center /non-log terminal center

- for the pair (R, Δ) , *IF*
 - For every element $f \in Q$,
 - and every $\epsilon > 0$,
 - the pair (R, Δ + ε div(f)) is NOT log canonical at Q (at the local ring/stalk),

this is the same as

- the triple $(R_Q, \Delta_Q, f^{\epsilon})$ is *NOT* log canonical
- if ∆ = 0, this is just the same as saying that (R₀, f^c) is NOT log canonical

A Positive Characteristic Analogue of Log Canonical Centers Applications Characteristic p > 0 singularities Log Canonical Centers Properties of log canonical centers

The Definition of Centers of Log Canonicity aka Log Canonical Centers

Choose $Q \in \operatorname{Spec} R$. We say that Q is a

center of log canonicity / log canonical center /non-log terminal center

for the pair (R, Δ) , *IF*

- For every element $f \in Q$,
- and every $\epsilon > 0$,
- the pair (R, Δ + ε div(f)) is NOT log canonical at Q (at the local ring/stalk),

this is the same as

- the triple $(R_Q, \Delta_Q, f^{\epsilon})$ is *NOT* log canonical
- if Δ = 0, this is just the same as saying that (R_Q, f^ε) is NOT log canonical

Background and Definitions <u>A Positive Characteristic Analogue of Log Canonical Centers</u> Characteristic p > 0 singularities Log Canonical Centers Properties of log canonical centers

The Definition of Centers of Log Canonicity aka Log Canonical Centers

Applications

Choose $Q \in \operatorname{Spec} R$. We say that Q is a

center of log canonicity / log canonical center /non-log terminal center

for the pair (R, Δ) , *IF*

- For every element $f \in Q$,
- and every $\epsilon > 0$,
- the pair (R, Δ + ε div(f)) is NOT log canonical at Q (at the local ring/stalk),

this is the same as

- the triple $(R_Q, \Delta_Q, f^{\epsilon})$ is *NOT* log canonical
- if Δ = 0, this is just the same as saying that (R_Q, f^ε) is NOT log canonical

A Positive Characteristic Analogue of Log Canonical Centers Applications Characteristic p > 0 singularities Log Canonical Centers Properties of log canonical centers

The Definition of Centers of Log Canonicity aka Log Canonical Centers

Choose $Q \in \operatorname{Spec} R$. We say that Q is a

center of log canonicity / log canonical center /non-log terminal center

for the pair (R, Δ) , *IF*

- For every element $f \in Q$,
- and every $\epsilon > 0$,
- the pair (R, Δ + ε div(f)) is NOT log canonical at Q (at the local ring/stalk),

this is the same as

- the triple $(R_Q, \Delta_Q, f^{\epsilon})$ is *NOT* log canonical
- if $\Delta = 0$, this is just the same as saying that (R_Q, f^{ϵ}) is *NOT* log canonical

A Positive Characteristic Analogue of Log Canonical Centers Applications Characteristic p > 0 singularities Log Canonical Centers Properties of log canonical centers

The Definition of Centers of Log Canonicity aka Log Canonical Centers

Choose $Q \in \operatorname{Spec} R$. We say that Q is a

center of log canonicity / log canonical center /non-log terminal center

for the pair (R, Δ) , *IF*

- For every element $f \in Q$,
- and every $\epsilon > 0$,
- the pair (R, Δ + ε div(f)) is NOT log canonical at Q (at the local ring/stalk),

this is the same as

- the triple $(R_Q, \Delta_Q, f^{\epsilon})$ is *NOT* log canonical
- if $\Delta = 0$, this is just the same as saying that (R_Q, f^{ϵ}) is *NOT* log canonical

Background and Definitions A Positive Characteristic Analogue of Log Canonical Centers Characteristic p > 0 singularities Log Canonical Centers Properties of log canonical centers

Basic Observations About Log Canonical Centers

Applications

Suppose that (R, Δ) is log canonical.

• There are only finitely many log canonical centers.

- This follows since the log canonical centers can be identified on a single resolution (using the description involving discrepancies)
- The intersection of all centers of log canonicity is the multiplier ideal.
 - This follows since in a log canonical pair, the multiplier ideal is a radical ideal and defines the non-log terminal locus.

	Positive Characteristic		Characteristic Zero
Recall:	Test Ideals	\Leftrightarrow	Multiplier Ideals
	F-Pure Singularities	\Rightarrow	Log Canonical Singularities
Background and Definitions Characteristic A Positive Characteristic Analogue of Log Canonical Centers Applications Properties of

Characteristic p > 0 singularities Log Canonical Centers Properties of log canonical centers

Basic Observations About Log Canonical Centers

Suppose that (R, Δ) is log canonical.

- There are only finitely many log canonical centers.
 - This follows since the log canonical centers can be identified on a single resolution (using the description involving discrepancies)
- The intersection of all centers of log canonicity is the multiplier ideal.
 - This follows since in a log canonical pair, the multiplier ideal is a radical ideal and defines the non-log terminal locus.

	Positive Characteristic		Characteristic Zero
Recall:	Test Ideals	\Leftrightarrow	Multiplier Ideals
	F-Pure Singularities	\implies	Log Canonical Singularities

 Background and Definitions
 Characteristic p > 0 singularities

 A Positive Characteristic Analogue of Log Canonical Centers
 Log Canonical Centers

 Applications
 Properties of log canonical centers

Basic Observations About Log Canonical Centers

Suppose that (R, Δ) is log canonical.

- There are only finitely many log canonical centers.
 - This follows since the log canonical centers can be identified on a single resolution (using the description involving discrepancies)
- The intersection of all centers of log canonicity is the multiplier ideal.
 - This follows since in a log canonical pair, the multiplier ideal is a radical ideal and defines the non-log terminal locus.

	Positive Characteristic		Characteristic Zero
Recall:	Test Ideals	\iff	Multiplier Ideals
	F-Pure Singularities	\Rightarrow	Log Canonical Singularities

< □ > < 同 > < 臣 > < 臣

 Background and Definitions
 Characteristic p > 0 singularities

 A Positive Characteristic Analogue of Log Canonical Centers
 Log Canonical Centers

 Applications
 Properties of log canonical centers

Basic Observations About Log Canonical Centers

Suppose that (R, Δ) is log canonical.

- There are only finitely many log canonical centers.
 - This follows since the log canonical centers can be identified on a single resolution (using the description involving discrepancies)
- The intersection of all centers of log canonicity is the multiplier ideal.
 - This follows since in a log canonical pair, the multiplier ideal is a radical ideal and defines the non-log terminal locus.

	Positive Characteristic		Characteristic Zero
Recall:	Test Ideals	\iff	Multiplier Ideals
	F-Pure Singularities	\Rightarrow	Log Canonical Singularities

A Positive Characteristic Analogue of Log Canonical Centers Applications

Deeper Results and Relations To Characteristic p > 0

Properties of log canonical centers

Characteristic Zero (R, Δ) is log canonical	Characteristic <i>p</i> > 0 <i>R</i> is <i>F</i> -pure
Finite $\#$ of log canonical centers.	If R is local, finite $\#$ of annihilators
	of <i>F</i> -stable submodules of $H^a_{\mathfrak{m}}(R)$
	[Enescu-Hochster, Sharp]
If <i>R</i> is log terminal then	$R/\tau(R)$ is F-pure [Vassilev],
$R/\mathcal{J}(\Delta)$ is Du Bois [-]	also see [Fedder-Watanabe]
If <i>R</i> is log terminal then	If <i>R</i> is local then
R/ (a largest log canonical center)	<i>R</i> / (Splitting Prime) is strongly
is log terminal [Kawamata]	F-regular, [Aberbach-Enescu]
If $I = \cap Q_i$ is an intersection	If <i>I</i> is an annihilator of an <i>F</i> -stable
of log canonical centers, then R/I	submodule of $H^d_{\mathfrak{m}}(R)$, then R/I
is seminormal. [Ambro]	is <i>F</i> -pure [Enescu-Hochster]

Recall:	Multiplier Ideals, $\mathcal{J}(R)$	\iff	Test Ideals, $\tau(R)$
	Log Canonical Singularities	\Leftarrow	F-Pure Singularities
	Log Terminal Singularities	\iff	Strongly F-Regular Singularities
	Du Bois Singularities	\Leftarrow	F-Injective Singularities
	-		イロディ 聞き イヨシー

Karl Schwede

A Positive Characteristic Analogue of Log Canonical Centers Applications Characteristic p > 0 singularities Log Canonical Centers Properties of log canonical centers

Deeper Results and Relations To Characteristic p > 0

Characteristic Zero (R, Δ) is log canonical	Characteristic <i>p</i> > 0 <i>R</i> is <i>F</i> -pure
Finite # of log canonical centers.	If <i>R</i> is local, finite $\#$ of annihilators of <i>F</i> -stable submodules of $H^d_m(R)$ [Enescu-Hochster, Sharp]
If <i>R</i> is log terminal then $R/\mathcal{J}(\Delta)$ is Du Bois [-]	$R/\tau(R)$ is <i>F</i> -pure [Vassilev], also see [Fedder-Watanabe]
If R is log terminal then R/ (a largest log canonical center) is log terminal [Kawamata]	If <i>R</i> is local then <i>R</i> / (Splitting Prime) is strongly <i>F</i> -regular, [Aberbach-Enescu]
If $I = \bigcap Q_i$ is an intersection of log canonical centers, then R/I is seminormal. [Ambro]	If <i>I</i> is an annihilator of an <i>F</i> -stable submodule of $H^d_{\mathfrak{m}}(R)$, then <i>R/I</i> is <i>F</i> -pure [Enescu-Hochster]
Multiplier Ideals, $\mathcal{J}(R) \leftarrow$	Test Ideals, $\tau(R)$

Recall:

Log Canonical Singularities \Leftarrow Log Terminal Singularities \Leftrightarrow Stro Du Bois Singularities \Leftarrow

Test Ideals, τ(R)
 F-Pure Singularities
 Strongly F-Regular Singularities
 F-Injective Singularities

Karl Schwede

A Positive Characteristic Analogue of Log Canonical Centers Applications Properties of log canonical centers

Deeper Results and Relations To Characteristic p > 0

Characteristic Zero	Characteristic $p > 0$
(R, Δ) is log canonical	<i>R</i> is <i>F</i> -pure
Finite $\#$ of log canonical centers.	If R is local, finite $\#$ of annihilators
	of <i>F</i> -stable submodules of $H^d_{\mathfrak{m}}(R)$
	[Enescu-Hochster, Sharp]
If <i>R</i> is log terminal then	$R/\tau(R)$ is <i>F</i> -pure [Vassilev],
$R/\mathcal{J}(\Delta)$ is Du Bois [-]	also see [Fedder-Watanabe]
If <i>R</i> is log terminal then	If <i>R</i> is local then
R/ (a largest log canonical center)	<i>R</i> / (Splitting Prime) is strongly
is log terminal [Kawamata]	F-regular, [Aberbach-Enescu]
If $I = \cap Q_i$ is an intersection	If <i>I</i> is an annihilator of an <i>F</i> -stable
of log canonical centers, then R/I	submodule of $H^d_{\mathfrak{m}}(R)$, then R/I
is seminormal. [Ambro]	is F-pure [Enescu-Hochster]
Multiplier Ideals, $\mathcal{J}(R) \leftarrow$ Becall: Log Canonical Singularities \leftarrow	F-Pure Singularities

Log Terminal Singularities **Du Bois Singularities**

Strongly *F*-Regular Singularities F-Injective Singularities \Leftarrow

Karl Schwede

A Positive Characteristic Analogue of Log Canonical Centers Applications Characteristic p > 0 singularities Log Canonical Centers Properties of log canonical centers

Deeper Results and Relations To Characteristic p > 0

Characteristic Zero	Characteristic $p > 0$
(R, Δ) is log canonical	<i>R</i> is <i>F</i> -pure
Finite $\#$ of log canonical centers.	If R is local, finite $\#$ of annihilators
	of <i>F</i> -stable submodules of $H^d_{\mathfrak{m}}(R)$
	[Enescu-Hochster, Sharp]
If R is log terminal then	$R/\tau(R)$ is <i>F</i> -pure [Vassilev],
$R/\mathcal{J}(\Delta)$ is Du Bois [-]	also see [Fedder-Watanabe]
If <i>R</i> is log terminal then	If <i>R</i> is local then
R/(a largest log canonical center)	R/(Splitting Prime) is strongly
is log terminal [Kawamata]	F-regular, [Aberbach-Enescu]
If $I = \cap Q_i$ is an intersection	If <i>I</i> is an annihilator of an <i>F</i> -stable
of log canonical centers, then R/I	submodule of $H^d_{\mathfrak{m}}(R)$, then R/I
is seminormal. [Ambro]	is F-pure [Enescu-Hochster]
Multiplier Ideals, $\mathcal{J}(R)$ Image: Call SingularitiesRecall:Log Canonical SingularitiesImage: Call Singularities	Test Ideals, $\tau(R)$ F-Pure Singularities Strongly F-Regular Singularities

⇐

Karl Schwede

Du Bois Singularities

A Geometric Characterization of (generalizations of) F-Ideals

∢ ⊡ È

F-Injective Singularities

A Positive Characteristic Analogue of Log Canonical Centers

Properties of log canonical centers Deeper Results and Relations To Characteristic p > 0

	.
Characteristic Zero	Characteristic $p > 0$
(R, Δ) is log canonical	<i>R</i> is <i>F</i> -pure
Finite $\#$ of log canonical centers.	If R is local, finite $\#$ of annihilators
	of <i>F</i> -stable submodules of $H^d_{\mathfrak{m}}(R)$
	[Enescu-Hochster, Sharp]
If <i>R</i> is log terminal then	$R/\tau(R)$ is <i>F</i> -pure [Vassilev],
$R/\mathcal{J}(\Delta)$ is Du Bois [-]	also see [Fedder-Watanabe]
If <i>R</i> is log terminal then	If <i>R</i> is local then
R/(a largest log canonical center)	<i>R</i> /(Splitting Prime) is strongly
is log terminal [Kawamata]	F-regular, [Aberbach-Enescu]
If $I = \cap Q_i$ is an intersection	If <i>I</i> is an annihilator of an <i>F</i> -stable
of log canonical centers, then R/I	submodule of $H^d_{\mathfrak{m}}(R)$, then R/I
is seminormal. [Ambro]	is F-pure [Enescu-Hochster]
Multiplier Ideals, $\mathcal{J}(R)$ \Leftarrow Recall:Log Canonical Singularities \Leftarrow Log Terminal Singularities \Leftarrow Du Bois Singularities \Leftarrow	Test Ideals, $\tau(R)$ F-Pure Singularities Strongly F-Regular Singularities F-Injective Singularities

Karl Schwede

Background and Definitions A Positive Characteristic Analogue of Log Canonical Centers Applications

Outline

Background and Definitions

- Characteristic *p* > 0 singularities
- Log Canonical Centers
- Properties of log canonical centers

2 A Positive Characteristic Analogue of Log Canonical Centers

- Definitions And First Properties
- Uniformly F-Compatible Ideals

3 Applications

- Deeper properties and results related to *F*-adjunction
- New Results in Characteristic Zero

Definition. Suppose that *R* is a reduced *F*-finite ring. We say that $Q \in \text{Spec } R$ is a *center of F-purity* if

- For every $f \in QR_Q$ and for every $e \ge 0$,
- the map

$$R_Q \xrightarrow{\alpha} R_Q^{\frac{1}{p^{\theta}}} = \alpha(1)$$

does NOT split.

Note that any minimal prime of the non-strongly *F*-regular locus is a center of *F*-purity.

If you wish to work with triples (R, Δ, a^t) , simply replace $R_Q^{\overline{p^e}}$ with $(R(\lceil (p^e - 1)\Delta \rceil))_Q^{\frac{1}{p^e}}$, you also want $1 \longmapsto (af)_{\overline{p^e}}^{\frac{1}{p^e}}$ not to split for every $a \in a^{\lceil t(p^e - 1) \rceil}$. This provides the notion of *centers of sharp F-purity.*

Definition. Suppose that *R* is a reduced *F*-finite ring. We say that $Q \in \text{Spec } R$ is a *center of F-purity* if

- For every $f \in QR_Q$ and for every $e \ge 0$,
- the map

does NOT split.

Note that any minimal prime of the non-strongly *F*-regular locus is a center of *F*-purity.

If you wish to work with triples $(R, \Delta, \mathfrak{a}^t)$, simply replace $R_Q^{\overline{p^e}}$ with $(R(\lceil (p^e - 1)\Delta \rceil))_Q^{\frac{1}{p^e}}$, you also want $1 \longmapsto (af)^{\frac{1}{p^e}}$ not to split for every $a \in \mathfrak{a}^{\lceil t(p^e - 1) \rceil}$. This provides the notion of *centers of sharp F-purity.*

Definition. Suppose that *R* is a reduced *F*-finite ring. We say that $Q \in \text{Spec } R$ is a *center of F-purity* if

- For every $f \in QR_Q$ and for every $e \ge 0$,
- the map

does NOT split.

Note that any minimal prime of the non-strongly *F*-regular locus is a center of *F*-purity.

If you wish to work with triples (R, Δ, a^t) , simply replace $R_Q^{\overline{p^e}}$ with $(R(\lceil (p^e - 1)\Delta \rceil))_Q^{\frac{1}{p^e}}$, you also want $1 \longmapsto (af)^{\frac{1}{p^e}}$ not to split for every $a \in a^{\lceil t(p^e - 1) \rceil}$. This provides the notion of *centers of sharp F-purity.*

Definition. Suppose that *R* is a reduced *F*-finite ring. We say that $Q \in \text{Spec } R$ is a *center of F-purity* if

- For every $f \in QR_Q$ and for every $e \ge 0$,
- the map

does NOT split.

Note that any minimal prime of the non-strongly *F*-regular locus is a center of *F*-purity.

If you wish to work with triples $(R, \Delta, \mathfrak{a}^t)$, simply replace $R_Q^{\overline{p^e}}$ with $(R(\lceil (p^e - 1)\Delta \rceil))_Q^{\frac{1}{p^e}}$, you also want $1 \longmapsto (af)^{\frac{1}{p^e}}$ not to split for every $a \in \mathfrak{a}^{\lceil t(p^e-1) \rceil}$. This provides the notion of *centers of sharp F-purity.*

Definition. Suppose that *R* is a reduced *F*-finite ring. We say that $Q \in \text{Spec } R$ is a *center of F-purity* if

- For every $f \in QR_Q$ and for every $e \ge 0$,
- the map

does NOT split.

Note that any minimal prime of the non-strongly *F*-regular locus is a center of *F*-purity.

If you wish to work with triples $(R, \Delta, \mathfrak{a}^t)$, simply replace $R_Q^{\overline{p^e}}$ with $(R(\lceil (p^e - 1)\Delta \rceil))_Q^{\frac{1}{p^e}}$, you also want $1 \longmapsto (af)^{\frac{1}{p^e}}$ not to split for every $a \in \mathfrak{a}^{\lceil t(p^e - 1) \rceil}$. This provides the notion of *centers of sharp F-purity.*

An Example

Definitions And First Properties Uniformly *F*-Compatible Ideals

Suppose that *k* is a perfect field of characteristic p > 0. Consider the ring

 $R = k[a, b, c]/(a^3 + abc - b^2) = k[xy, x^2y, x - y] \subset k[x, y]$

It is easy to verify that this ring is F-pure [Fedder]. Its centers of F-purity are exactly the ideals (0), (a, b) and (a, b, c).

An Example

Suppose that *k* is a perfect field of characteristic p > 0. Consider the ring

$$R = k[a, b, c]/(a^3 + abc - b^2) = k[xy, x^2y, x - y] \subset k[x, y]$$

It is easy to verify that this ring is *F*-pure [Fedder]. Its centers of *F*-purity are exactly the ideals (0), (a, b) and (a, b, c).

イロト イボト イヨト イヨト

Definitions And First Properties

An Example

Suppose that *k* is a perfect field of characteristic p > 0. Consider the ring

$$R = k[a, b, c]/(a^3 + abc - b^2) = k[xy, x^2y, x - y] \subset k[x, y]$$

It is easy to verify that this ring is *F*-pure [Fedder].

Its centers of F-purity are exactly the ideals (0), (a, b) and (a, b, c).

イロト イボト イヨト イヨト

Definitions And First Properties

An Example

Suppose that *k* is a perfect field of characteristic p > 0. Consider the ring

$$R = k[a,b,c]/(a^3 + abc - b^2) = k[xy,x^2y,x-y] \subset k[x,y]$$

It is easy to verify that this ring is *F*-pure [Fedder].

Its centers of *F*-purity are exactly the ideals (0), (a, b) and (a, b, c).

イロト イポト イヨト イヨト

Definitions And First Properties

Proposition. Suppose that *R* is a reduced *F*-finite ring and that $Q \in \text{Spec } R$. Then the following are equivalent:

- (1) *Q* is a center of *F*-purity.
- (2) For every e > 0 and every map $\phi \in \operatorname{Hom}_{R_Q}(R_Q^{1/p^e}, R_Q), \phi((QR_Q)^{\frac{1}{p^e}}) \subseteq QR_Q.$
- (3) For every e > 0 and every map $\phi \in \operatorname{Hom}_{R}(R^{1/p^{e}}, R)$, $\phi(Q^{\frac{1}{p^{e}}}) \subseteq Q$.

Proof.

(1) \leftrightarrow (2): note that "not splitting" is basically not sending elements of Q to units. (2) \leftrightarrow (3) is straightforward.

• This generalizes to triples $(R, \Delta, \mathfrak{a}^t)$.

Proposition. Suppose that *R* is a reduced *F*-finite ring and that $Q \in \text{Spec } R$. Then the following are equivalent:

- (1) Q is a center of F-purity.
- (2) For every e > 0 and every map $\phi \in \operatorname{Hom}_{R_Q}(R_Q^{1/p^e}, R_Q), \phi((QR_Q)^{\frac{1}{p^e}}) \subseteq QR_Q.$
- (3) For every e > 0 and every map $\phi \in \operatorname{Hom}_{R}(R^{1/p^{e}}, R)$, $\phi(Q^{\frac{1}{p^{e}}}) \subseteq Q$.

Proof.

(1) \leftrightarrow (2): note that "not splitting" is basically not sending elements of Q to units. (2) \leftrightarrow (3) is straightforward.

• This generalizes to triples $(R, \Delta, \mathfrak{a}^t)$.

Proposition. Suppose that *R* is a reduced *F*-finite ring and that $Q \in \text{Spec } R$. Then the following are equivalent:

- (1) Q is a center of F-purity.
- (2) For every e > 0 and every map $\phi \in \operatorname{Hom}_{R_Q}(R_Q^{1/p^e}, R_Q)$, $\phi((QR_Q)^{\frac{1}{p^e}}) \subseteq QR_Q$.
- (3) For every e > 0 and every map $\phi \in \operatorname{Hom}_{R}(R^{1/p^{e}}, R)$, $\phi(Q^{\frac{1}{p^{e}}}) \subseteq Q$.

Proof.

(1) \leftrightarrow (2): note that "not splitting" is basically not sending elements of Q to units. (2) \leftrightarrow (3) is straightforward.

• This generalizes to triples $(R, \Delta, \mathfrak{a}^t)$.

Proposition. Suppose that *R* is a reduced *F*-finite ring and that $Q \in \text{Spec } R$. Then the following are equivalent:

- (1) Q is a center of F-purity.
- (2) For every e > 0 and every map $\phi \in \operatorname{Hom}_{R_Q}(R_Q^{1/p^e}, R_Q)$, $\phi((QR_Q)^{\frac{1}{p^e}}) \subseteq QR_Q$.
- (3) For every e > 0 and every map $\phi \in \operatorname{Hom}_{R}(R^{1/p^{e}}, R)$, $\phi(Q^{\frac{1}{p^{e}}}) \subseteq Q$.

Proof.

(1) \leftrightarrow (2): note that "not splitting" is basically not sending elements of Q to units. (2) \leftrightarrow (3) is straightforward.

• This generalizes to triples $(R, \Delta, \mathfrak{a}^t)$.

Proposition. Suppose that *R* is a reduced *F*-finite ring and that $Q \in \text{Spec } R$. Then the following are equivalent:

- (1) Q is a center of F-purity.
- (2) For every e > 0 and every map $\phi \in \operatorname{Hom}_{R_Q}(R_Q^{1/p^e}, R_Q)$, $\phi((QR_Q)^{\frac{1}{p^e}}) \subseteq QR_Q$.
- (3) For every e > 0 and every map $\phi \in \operatorname{Hom}_{R}(R^{1/p^{e}}, R)$, $\phi(Q^{\frac{1}{p^{e}}}) \subseteq Q$.

Proof.

(1) \leftrightarrow (2): note that "not splitting" is basically not sending elements of Q to units. (2) \leftrightarrow (3) is straightforward.

• This generalizes to triples $(R, \Delta, \mathfrak{a}^t)$.

Proposition. Suppose that *R* is a reduced *F*-finite ring and that $Q \in \text{Spec } R$. Then the following are equivalent:

- (1) Q is a center of F-purity.
- (2) For every e > 0 and every map $\phi \in \operatorname{Hom}_{R_Q}(R_Q^{1/p^e}, R_Q)$, $\phi((QR_Q)^{\frac{1}{p^e}}) \subseteq QR_Q$.
- (3) For every e > 0 and every map $\phi \in \operatorname{Hom}_{R}(R^{1/p^{e}}, R)$, $\phi(Q^{\frac{1}{p^{e}}}) \subseteq Q$.

Proof.

(1) \leftrightarrow (2): note that "not splitting" is basically not sending elements of Q to units. (2) \leftrightarrow (3) is straightforward.

• This generalizes to triples $(R, \Delta, \mathfrak{a}^t)$.

A Better Definition to Work With? If at first you don't succeed re"define" success...

Definition. Suppose *R* is a reduced *F*-finite ring. We say that an ideal $I \subset R$ is *uniformly F-compatible* if

- for every e > 0 and
- for every $\phi \in \operatorname{Hom}_{R}(R^{\frac{1}{p^{e}}}, R)$,
- we have $\phi(I^{\frac{1}{p^e}}) \subseteq I$.

I'd also like to state this definition for triples $(R, \Delta, \mathfrak{a}^t)$ (where $\mathfrak{a} \subseteq R$ is a non-zero ideal and t > 0 is a rational number).

Definition. Suppose *R* is a normal *F*-finite ring. We say that an ideal $I \subset R$ is *uniformly* (Δ, a^t, F) -*compatible* if for every e > 0 and for every $\phi \in \text{Hom}_R(R(\lceil (p^e - 1)\Delta \rceil)^{\frac{1}{p^e}}, R))$, we have

$$\phi((\mathfrak{a}^{\lceil t(p^e-1)\rceil}I)^{\frac{1}{p^e}}) \subseteq I.$$

• • • • • • • • • • • •

A Better Definition to Work With? If at first you don't succeed re"define" success...

Definition. Suppose *R* is a reduced *F*-finite ring. We say that an ideal $I \subset R$ is *uniformly F-compatible* if

- for every e > 0 and
- for every $\phi \in \operatorname{Hom}_R(R^{\frac{1}{p^e}}, R)$,
- we have $\phi(I^{\frac{1}{p^e}}) \subseteq I$.

I'd also like to state this definition for triples (R, Δ, a^t) (where $a \subseteq R$ is a non-zero ideal and t > 0 is a rational number).

Definition. Suppose *R* is a normal *F*-finite ring. We say that an ideal $I \subset R$ is *uniformly* (Δ, a^t, F) -*compatible* if for every e > 0 and for every $\phi \in \text{Hom}_R(R(\lceil (p^e - 1)\Delta \rceil)^{\frac{1}{p^e}}, R))$, we have

$$\phi((\mathfrak{a}^{\lceil t(p^e-1)\rceil}I)^{\frac{1}{p^e}}) \subseteq I.$$

• • • • • • • • • • • •

A Better Definition to Work With? If at first you don't succeed re"define" success...

Definition. Suppose *R* is a reduced *F*-finite ring. We say that an ideal $I \subset R$ is *uniformly F-compatible* if

- for every *e* > 0 and
- for every $\phi \in \operatorname{Hom}_{R}(R^{\frac{1}{p^{e}}}, R)$,
- we have $\phi(I^{\frac{1}{p^e}}) \subseteq I$.

I'd also like to state this definition for triples (R, Δ, a^t) (where $a \subseteq R$ is a non-zero ideal and t > 0 is a rational number).

Definition. Suppose *R* is a normal *F*-finite ring. We say that an ideal $I \subset R$ is *uniformly* (Δ, a^t, F) -*compatible* if for every e > 0 and for every $\phi \in \text{Hom}_R(R(\lceil (p^e - 1)\Delta \rceil)^{\frac{1}{p^e}}, R))$, we have

$$\phi((\mathfrak{a}^{\lceil t(p^e-1)\rceil}I)^{\frac{1}{p^e}}) \subseteq I.$$

A Better Definition to Work With? If at first you don't succeed re"define" success...

Definition. Suppose *R* is a reduced *F*-finite ring. We say that an ideal $I \subset R$ is *uniformly F-compatible* if

- for every e > 0 and
- for every $\phi \in \operatorname{Hom}_{R}(R^{\frac{1}{p^{e}}}, R)$,

• we have
$$\phi(I^{\frac{1}{p^e}}) \subseteq I$$
.

I'd also like to state this definition for triples (R, Δ, a^t) (where $a \subseteq R$ is a non-zero ideal and t > 0 is a rational number).

Definition. Suppose *R* is a normal *F*-finite ring. We say that an ideal $I \subset R$ is *uniformly* (Δ, a^t, F) -*compatible* if for every e > 0 and for every $\phi \in \text{Hom}_R(R(\lceil (p^e - 1)\Delta \rceil)^{\frac{1}{p^e}}, R))$, we have

$$\phi((\mathfrak{a}^{\lceil t(p^e-1)\rceil}I)^{\frac{1}{p^e}}) \subseteq I.$$

A Better Definition to Work With? If at first you don't succeed re"define" success...

Definition. Suppose *R* is a reduced *F*-finite ring. We say that an ideal $I \subset R$ is *uniformly F-compatible* if

- for every e > 0 and
- for every $\phi \in \operatorname{Hom}_{R}(R^{\frac{1}{p^{e}}}, R)$,
- we have $\phi(I^{\frac{1}{p^e}}) \subseteq I$.

I'd also like to state this definition for triples $(R, \Delta, \mathfrak{a}^t)$ (where $\mathfrak{a} \subseteq R$ is a non-zero ideal and t > 0 is a rational number).

Definition. Suppose *R* is a normal *F*-finite ring. We say that an ideal $I \subset R$ is *uniformly* $(\Delta, \mathfrak{a}^t, F)$ -*compatible* if for every e > 0 and for every $\phi \in \operatorname{Hom}_R(R(\lceil (p^e - 1)\Delta \rceil)^{\frac{1}{p^e}}, R))$, we have

A Better Definition to Work With? If at first you don't succeed re"define" success...

Definition. Suppose *R* is a reduced *F*-finite ring. We say that an ideal $I \subset R$ is *uniformly F-compatible* if

- for every e > 0 and
- for every $\phi \in \operatorname{Hom}_R(R^{\frac{1}{p^{\theta}}}, R)$,

• we have
$$\phi(I^{\frac{1}{p^e}}) \subseteq I$$
.

I'd also like to state this definition for triples $(R, \Delta, \mathfrak{a}^t)$ (where $\mathfrak{a} \subseteq R$ is a non-zero ideal and t > 0 is a rational number).

Definition. Suppose *R* is a normal *F*-finite ring. We say that an ideal $I \subset R$ is *uniformly* $(\Delta, \mathfrak{a}^t, F)$ -*compatible* if for every e > 0 and for every $\phi \in \operatorname{Hom}_R(R(\lceil (p^e - 1)\Delta \rceil)^{\frac{1}{p^e}}, R))$, we have

$$\phi((\mathfrak{a}^{\lceil t(p^e-1)\rceil}I)^{\frac{1}{p^e}})\subseteq I.$$

Consider the following properties of uniformly *F*-compatible ideals (analogues hold for various sorts of pairs and triples).

- (1) Any intersection of uniformly *F*-compatible ideals is uniformly *F*-compatible.
- (2) Any sum of uniformly *F*-compatible ideals is uniformly *F*-compatible.
- (3) Any radical of a uniformly *F*-compatible ideal is uniformly *F*-compatible.
- (4) Any associated prime of a radical uniformly *F*-compatible ideal is uniformly *F*-compatible.
- (5) In an *F*-pure ring if *I* is uniformly *F*-compatible, then *R*/*I* is *F*-pure. In particular, *I* is radical.
- (6) A prime *Q* is uniformly *F*-compatible if and only if *Q* is a center of *F*-purity.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Consider the following properties of uniformly *F*-compatible ideals (analogues hold for various sorts of pairs and triples).

- (1) Any intersection of uniformly *F*-compatible ideals is uniformly *F*-compatible.
- (2) Any sum of uniformly *F*-compatible ideals is uniformly *F*-compatible.
- (3) Any radical of a uniformly *F*-compatible ideal is uniformly *F*-compatible.
- (4) Any associated prime of a radical uniformly *F*-compatible ideal is uniformly *F*-compatible.
- (5) In an *F*-pure ring if *I* is uniformly *F*-compatible, then *R*/*I* is *F*-pure. In particular, *I* is radical.
- (6) A prime *Q* is uniformly *F*-compatible if and only if *Q* is a center of *F*-purity.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Consider the following properties of uniformly *F*-compatible ideals (analogues hold for various sorts of pairs and triples).

- (1) Any intersection of uniformly *F*-compatible ideals is uniformly *F*-compatible.
- (2) Any sum of uniformly *F*-compatible ideals is uniformly *F*-compatible.
- (3) Any radical of a uniformly *F*-compatible ideal is uniformly *F*-compatible.
- (4) Any associated prime of a radical uniformly *F*-compatible ideal is uniformly *F*-compatible.
- (5) In an *F*-pure ring if *I* is uniformly *F*-compatible, then *R*/*I* is *F*-pure. In particular, *I* is radical.
- (6) A prime *Q* is uniformly *F*-compatible if and only if *Q* is a center of *F*-purity.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Consider the following properties of uniformly *F*-compatible ideals (analogues hold for various sorts of pairs and triples).

- (1) Any intersection of uniformly *F*-compatible ideals is uniformly *F*-compatible.
- (2) Any sum of uniformly *F*-compatible ideals is uniformly *F*-compatible.
- (3) Any radical of a uniformly *F*-compatible ideal is uniformly *F*-compatible.
- (4) Any associated prime of a radical uniformly *F*-compatible ideal is uniformly *F*-compatible.
- (5) In an *F*-pure ring if *I* is uniformly *F*-compatible, then *R*/*I* is *F*-pure. In particular, *I* is radical.
- (6) A prime *Q* is uniformly *F*-compatible if and only if *Q* is a center of *F*-purity.

イロト (過) (ほ) (ほ)

Consider the following properties of uniformly *F*-compatible ideals (analogues hold for various sorts of pairs and triples).

- (1) Any intersection of uniformly *F*-compatible ideals is uniformly *F*-compatible.
- (2) Any sum of uniformly *F*-compatible ideals is uniformly *F*-compatible.
- (3) Any radical of a uniformly *F*-compatible ideal is uniformly *F*-compatible.
- (4) Any associated prime of a radical uniformly *F*-compatible ideal is uniformly *F*-compatible.
- (5) In an *F*-pure ring if *I* is uniformly *F*-compatible, then *R*/*I* is *F*-pure. In particular, *I* is radical.
- (6) A prime *Q* is uniformly *F*-compatible if and only if *Q* is a center of *F*-purity.

イロト (過) (ほ) (ほ)

Consider the following properties of uniformly *F*-compatible ideals (analogues hold for various sorts of pairs and triples).

- (1) Any intersection of uniformly *F*-compatible ideals is uniformly *F*-compatible.
- (2) Any sum of uniformly *F*-compatible ideals is uniformly *F*-compatible.
- (3) Any radical of a uniformly *F*-compatible ideal is uniformly *F*-compatible.
- (4) Any associated prime of a radical uniformly *F*-compatible ideal is uniformly *F*-compatible.
- (5) In an *F*-pure ring if *I* is uniformly *F*-compatible, then *R*/*I* is *F*-pure. In particular, *I* is radical.
- (6) A prime *Q* is uniformly *F*-compatible if and only if *Q* is a center of *F*-purity.

イロト (過) (ほ) (ほ)
First Observations About Uniformly *F*-Compatible Ideals

Consider the following properties of uniformly *F*-compatible ideals (analogues hold for various sorts of pairs and triples).

- (1) Any intersection of uniformly *F*-compatible ideals is uniformly *F*-compatible.
- (2) Any sum of uniformly *F*-compatible ideals is uniformly *F*-compatible.
- (3) Any radical of a uniformly *F*-compatible ideal is uniformly *F*-compatible.
- (4) Any associated prime of a radical uniformly *F*-compatible ideal is uniformly *F*-compatible.
- (5) In an *F*-pure ring if *I* is uniformly *F*-compatible, then *R*/*I* is *F*-pure. In particular, *I* is radical.
- (6) A prime *Q* is uniformly *F*-compatible if and only if *Q* is a center of *F*-purity.

Finitely Many Uniformly F-Compatible Ideals

The various properties on the previous page, together with the techniques of [Enescu-Hochster] imply the following

Corollary. If (R, \mathfrak{m}) is an *F*-finite local ring and $(R, \Delta, \mathfrak{a}^t)$ is a sharply *F*-pure triple, then there are at most finitely many uniformly $(\Delta, \mathfrak{a}^t, F)$ -compatible ideals.

This can also be obtained in the non-pair case by the techniques of [Sharp].

It does however suggest the following question.

Question. If *R* is an *F*-finite *F*-pure ring, then are there only finitely many uniformly *F*-compatible ideals?

・ロト ・ 同ト ・ ヨト ・ ヨト

Finitely Many Uniformly F-Compatible Ideals

The various properties on the previous page, together with the techniques of [Enescu-Hochster] imply the following

Corollary. If (R, \mathfrak{m}) is an *F*-finite local ring and $(R, \Delta, \mathfrak{a}^t)$ is a sharply *F*-pure triple, then there are at most finitely many uniformly $(\Delta, \mathfrak{a}^t, F)$ -compatible ideals.

This can also be obtained in the non-pair case by the techniques of [Sharp].

It does however suggest the following question.

Question. If *R* is an *F*-finite *F*-pure ring, then are there only finitely many uniformly *F*-compatible ideals?

イロト イ理ト イヨト

Suppose that (S, \mathfrak{m}) is an *F*-finite regular local ring and that R = S/I is a quotient. Suppose that $J' \subset S$ is an ideal containing *I* and set $J = J'/J \subset R$. TFAE:

(a) J is uniformly F-compatible.

(b) For every e > 0 and every $f \in J$, the composition

$$\operatorname{Ann}_{E_R}(J) = E_{R/J} \longrightarrow E_R \longrightarrow R^{\frac{1}{p^{\theta}}} \otimes_R E_R \xrightarrow{\times f^{\frac{1}{p^{\theta}}}} R^{\frac{1}{p^{\theta}}} \otimes_R E_R$$

is zero.

- (c) For every e > 0 we have $(I^{[p^e]} : I) \subseteq (J'^{[p^e]} : J')$.
- (d) $Ann_{E_R}(J)$ is an $\mathcal{F}(E_R)$ -submodules of E_R . [Lyubeznik-Smith]

Suppose that (S, \mathfrak{m}) is an *F*-finite regular local ring and that R = S/I is a quotient. Suppose that $J' \subset S$ is an ideal containing *I* and set $J = J'/J \subset R$. TFAE:

- (a) J is uniformly F-compatible.
- (b) For every e > 0 and every $f \in J$, the composition

$$\operatorname{Ann}_{E_R}(J) = E_{R/J} \longrightarrow E_R \longrightarrow R^{\frac{1}{p^{\theta}}} \otimes_R E_R \xrightarrow{\times t^{\frac{1}{p^{\theta}}}} R^{\frac{1}{p^{\theta}}} \otimes_R E_R$$

is zero.

- (c) For every e > 0 we have $(I^{[p^e]} : I) \subseteq (J'^{[p^e]} : J')$.
- (d) $Ann_{E_R}(J)$ is an $\mathcal{F}(E_R)$ -submodules of E_R . [Lyubeznik-Smith]

Suppose that (S, \mathfrak{m}) is an *F*-finite regular local ring and that R = S/I is a quotient. Suppose that $J' \subset S$ is an ideal containing *I* and set $J = J'/J \subset R$. TFAE:

- (a) J is uniformly F-compatible.
- (b) For every e > 0 and every $f \in J$, the composition

Ann<sub>*E_R*(*J*) = *E_{R/J}*
$$\longrightarrow$$
 E_R \longrightarrow *R* ^{$\frac{1}{p^{\theta}}$} $\otimes_R E_R$ $\xrightarrow{\times f^{\frac{1}{p^{\theta}}}}$ *R* ^{$\frac{1}{p^{\theta}}$} $\otimes_R E_R$ is zero.</sub>

- (c) For every e > 0 we have $(I^{[p^e]} : I) \subseteq (J'^{[p^e]} : J')$.
- (d) $Ann_{E_R}(J)$ is an $\mathcal{F}(E_R)$ -submodules of E_R . [Lyubeznik-Smith]

Suppose that (S, \mathfrak{m}) is an *F*-finite regular local ring and that R = S/I is a quotient. Suppose that $J' \subset S$ is an ideal containing *I* and set $J = J'/J \subset R$. TFAE:

- (a) J is uniformly F-compatible.
- (b) For every e > 0 and every $f \in J$, the composition

$$\operatorname{Ann}_{E_R}(J) = E_{R/J} \longrightarrow E_R \longrightarrow R^{\frac{1}{p^e}} \otimes_R E_R \xrightarrow{\times f^{\frac{1}{p^e}}} R^{\frac{1}{p^e}} \otimes_R E_R$$

is zero.

(c) For every e > 0 we have $(I^{[p^e]} : I) \subseteq (J'^{[p^e]} : J')$.

・ロト ・ 雪 ト ・ ヨ ト ・

Suppose that (S, \mathfrak{m}) is an *F*-finite regular local ring and that R = S/I is a quotient. Suppose that $J' \subset S$ is an ideal containing *I* and set $J = J'/J \subset R$. TFAE:

- (a) J is uniformly F-compatible.
- (b) For every e > 0 and every $f \in J$, the composition

$$\operatorname{Ann}_{E_R}(J) = E_{R/J} \longrightarrow E_R \longrightarrow R^{\frac{1}{p^{\theta}}} \otimes_R E_R \xrightarrow{\times f^{\frac{1}{p^{\theta}}}} R^{\frac{1}{p^{\theta}}} \otimes_R E_R$$

is zero.

- (c) For every e > 0 we have $(I^{[p^e]} : I) \subseteq (J'^{[p^e]} : J')$.
- (d) $Ann_{E_R}(J)$ is an $\mathcal{F}(E_R)$ -submodules of E_R . [Lyubeznik-Smith]

Suppose that (S, \mathfrak{m}) is an *F*-finite regular local ring and that R = S/I is a quotient. Suppose that $J' \subset S$ is an ideal containing *I* and set $J = J'/J \subset R$. TFAE:

- (a) J is uniformly F-compatible.
- (b) For every e > 0 and every $f \in J$, the composition

$$\operatorname{Ann}_{E_R}(J) = E_{R/J} \longrightarrow E_R \longrightarrow R^{\frac{1}{p^{\theta}}} \otimes_R E_R \xrightarrow{\times f^{\frac{1}{p^{\theta}}}} R^{\frac{1}{p^{\theta}}} \otimes_R E_R$$

is zero.

- (c) For every e > 0 we have $(I^{[p^e]} : I) \subseteq (J'^{[p^e]} : J')$.
- (d) $Ann_{E_R}(J)$ is an $\mathcal{F}(E_R)$ -submodules of E_R . [Lyubeznik-Smith]

Condition (b) generalizes to triples $(R, \Delta, \mathfrak{a}^t)$, condition (c) generalizes to pairs (R, \mathfrak{a}^t) .

Background and Definitions A Positive Characteristic Analogue of Log Canonical Centers Applications

Deeper properties and results related to *F*-adjunct New Results in Characteristic Zero

Outline

Background and Definitions

- Characteristic *p* > 0 singularities
- Log Canonical Centers
- Properties of log canonical centers

2 A Positive Characteristic Analogue of Log Canonical Centers

- Definitions And First Properties
- Uniformly F-Compatible Ideals

3 Applications

- Deeper properties and results related to *F*-adjunction
- New Results in Characteristic Zero

Suppose that *R* is an *F*-finite reduced ring.

- The test ideal $\tau(R)$ is uniformly *F*-compatible.
- If *R* is *F*-pure, then the conductor is uniformly *F*-compatible.
- If *I* is an annihilator of any *F*-stable submodule of H^d_m(R), then *I* is uniformly *F*-compatible.
- If *R* is *F*-pure and local, then the splitting prime *P*, see [Aberbach-Enescu], is uniformly *F*-compatible
 - In fact, in this case, the splitting prime is the unique largest uniformly *F*-compatible proper ideal.

The previous results also hold for pairs/triples (where appropriate)

イロト 不得 とくほと くほとう

Suppose that *R* is an *F*-finite reduced ring.

- The test ideal $\tau(R)$ is uniformly *F*-compatible.
- If *R* is *F*-pure, then the conductor is uniformly *F*-compatible.
- If *I* is an annihilator of any *F*-stable submodule of H^d_m(R), then *I* is uniformly *F*-compatible.
- If *R* is *F*-pure and local, then the splitting prime *P*, see [Aberbach-Enescu], is uniformly *F*-compatible
 - In fact, in this case, the splitting prime is the unique largest uniformly *F*-compatible proper ideal.

The previous results also hold for pairs/triples (where appropriate)

イロト 不得 とくほと くほとう

Suppose that *R* is an *F*-finite reduced ring.

- The test ideal $\tau(R)$ is uniformly *F*-compatible.
- If *R* is *F*-pure, then the conductor is uniformly *F*-compatible.
- If *I* is an annihilator of any *F*-stable submodule of H^d_m(R), then *I* is uniformly *F*-compatible.
- If *R* is *F*-pure and local, then the splitting prime *P*, see [Aberbach-Enescu], is uniformly *F*-compatible
 - In fact, in this case, the splitting prime is the unique largest uniformly *F*-compatible proper ideal.

The previous results also hold for pairs/triples (where appropriate)

Suppose that *R* is an *F*-finite reduced ring.

- The test ideal $\tau(R)$ is uniformly *F*-compatible.
- If *R* is *F*-pure, then the conductor is uniformly *F*-compatible.
- If *I* is an annihilator of any *F*-stable submodule of H^d_m(R), then *I* is uniformly *F*-compatible.
- If R is F-pure and local, then the splitting prime \mathcal{P} , see [Aberbach-Enescu], is uniformly F-compatible
 - In fact, in this case, the splitting prime is the unique largest uniformly *F*-compatible proper ideal.

The previous results also hold for pairs/triples (where appropriate)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Suppose that *R* is an *F*-finite reduced ring.

- The test ideal $\tau(R)$ is uniformly *F*-compatible.
- If *R* is *F*-pure, then the conductor is uniformly *F*-compatible.
- If *I* is an annihilator of any *F*-stable submodule of H^d_m(R), then *I* is uniformly *F*-compatible.
- If *R* is *F*-pure and local, then the splitting prime *P*, see [Aberbach-Enescu], is uniformly *F*-compatible
 - In fact, in this case, the splitting prime is the unique largest uniformly *F*-compatible proper ideal.

The previous results also hold for pairs/triples (where appropriate)

・ロト ・ 雪 ト ・ ヨ ト ・

Suppose that *R* is an *F*-finite reduced ring.

- The test ideal $\tau(R)$ is uniformly *F*-compatible.
- If *R* is *F*-pure, then the conductor is uniformly *F*-compatible.
- If *I* is an annihilator of any *F*-stable submodule of H^d_m(R), then *I* is uniformly *F*-compatible.
- If *R* is *F*-pure and local, then the splitting prime *P*, see [Aberbach-Enescu], is uniformly *F*-compatible
 - In fact, in this case, the splitting prime is the unique largest uniformly *F*-compatible proper ideal.

The previous results also hold for pairs/triples (where appropriate)

イロト イヨト イヨト

- The non-finitistic/big test ideal $\tilde{\tau}(R) = \tau_b(R)$ is uniformly *F*-compatible.
 - In fact, it is the smallest uniformly F-compatible ideal that contains an element of R°.
- If (R, Δ) is a pair and $\pi : Y \to \text{Spec } R$ is a proper birational map with Y normal, then for any effective divisor G on Y such that $\pi_* \mathcal{O}_Y(\lceil K_Y - \pi^*(K_R + \Delta) + G \rceil) \subseteq \mathcal{O}_{\text{Spec } R}$, we have that (the global sections of) $\pi_* \mathcal{O}_Y(\lceil K_Y - \pi^*(K_R + \Delta) + G \rceil)$ is uniformly (Δ, F) -compatible.
 - In particular, the multiplier ideal *J*(Δ) is uniformly (Δ, *F*)-compatible (as is the adjoint ideal).
 - Any center of log canonicity for (R, Δ) reduced generically from characteristic zero is uniformly (Δ_ρ, F)-compatible.

イロト 不得 とくほ とくほとう

- The non-finitistic/big test ideal τ̃(R) = τ_b(R) is uniformly F-compatible.
 - In fact, it is the smallest uniformly *F*-compatible ideal that contains an element of *R*°.
- If (R, Δ) is a pair and $\pi : Y \to \text{Spec } R$ is a proper birational map with Y normal, then for any effective divisor G on Y such that $\pi_*\mathcal{O}_Y(\lceil K_Y - \pi^*(K_R + \Delta) + G\rceil) \subseteq \mathcal{O}_{\text{Spec } R}$, we have that (the global sections of) $\pi_*\mathcal{O}_Y(\lceil K_Y - \pi^*(K_R + \Delta) + G\rceil)$ is uniformly (Δ, F) -compatible.
 - In particular, the multiplier ideal *J*(Δ) is uniformly (Δ, *F*)-compatible (as is the adjoint ideal).
 - Any center of log canonicity for (R, Δ) reduced generically from characteristic zero is uniformly (Δ_ρ, F)-compatible.

イロト 不得 とくほ とくほとう

- The non-finitistic/big test ideal τ̃(R) = τ_b(R) is uniformly F-compatible.
 - In fact, it is the smallest uniformly *F*-compatible ideal that contains an element of *R*°.
- If (R, Δ) is a pair and $\pi : Y \to \text{Spec } R$ is a proper birational map with Y normal, then for any effective divisor G on Y such that $\pi_*\mathcal{O}_Y(\lceil K_Y - \pi^*(K_R + \Delta) + G\rceil) \subseteq \mathcal{O}_{\text{Spec } R}$, we have that (the global sections of) $\pi_*\mathcal{O}_Y(\lceil K_Y - \pi^*(K_R + \Delta) + G\rceil)$ is uniformly (Δ, F) -compatible.
 - In particular, the multiplier ideal *J*(Δ) is uniformly (Δ, *F*)-compatible (as is the adjoint ideal).
 - Any center of log canonicity for (R, Δ) reduced generically from characteristic zero is uniformly (Δ_ρ, F)-compatible.

ヘロン 人間 とくほ とくほ とう

- The non-finitistic/big test ideal τ̃(R) = τ_b(R) is uniformly F-compatible.
 - In fact, it is the smallest uniformly *F*-compatible ideal that contains an element of *R*°.
- If (R, Δ) is a pair and $\pi : Y \to \text{Spec } R$ is a proper birational map with Y normal, then for any effective divisor G on Y such that $\pi_* \mathcal{O}_Y(\lceil K_Y - \pi^*(K_R + \Delta) + G \rceil) \subseteq \mathcal{O}_{\text{Spec } R}$, we have that (the global sections of) $\pi_* \mathcal{O}_Y(\lceil K_Y - \pi^*(K_R + \Delta) + G \rceil)$ is uniformly (Δ, F) -compatible.
 - In particular, the multiplier ideal *J*(Δ) is uniformly (Δ, *F*)-compatible (as is the adjoint ideal).
 - Any center of log canonicity for (R, Δ) reduced generically from characteristic zero is uniformly (Δ_p, F)-compatible.

・ロト ・ 雪 ト ・ ヨ ト ・

- The non-finitistic/big test ideal τ̃(R) = τ_b(R) is uniformly F-compatible.
 - In fact, it is the smallest uniformly *F*-compatible ideal that contains an element of *R*°.
- If (R, Δ) is a pair and $\pi : Y \to \text{Spec } R$ is a proper birational map with Y normal, then for any effective divisor G on Y such that $\pi_* \mathcal{O}_Y(\lceil K_Y - \pi^*(K_R + \Delta) + G \rceil) \subseteq \mathcal{O}_{\text{Spec } R}$, we have that (the global sections of) $\pi_* \mathcal{O}_Y(\lceil K_Y - \pi^*(K_R + \Delta) + G \rceil)$ is uniformly (Δ, F) -compatible.
 - In particular, the multiplier ideal *J*(Δ) is uniformly (Δ, *F*)-compatible (as is the adjoint ideal).
 - Any center of log canonicity for (R, Δ) reduced generically from characteristic zero is uniformly (Δ_p, F)-compatible.

・ロト ・ 同ト ・ ヨト ・ ヨト

- The non-finitistic/big test ideal τ̃(R) = τ_b(R) is uniformly F-compatible.
 - In fact, it is the smallest uniformly *F*-compatible ideal that contains an element of *R*°.
- If (R, Δ) is a pair and $\pi : Y \to \text{Spec } R$ is a proper birational map with Y normal, then for any effective divisor G on Y such that $\pi_* \mathcal{O}_Y(\lceil K_Y - \pi^*(K_R + \Delta) + G \rceil) \subseteq \mathcal{O}_{\text{Spec } R}$, we have that (the global sections of) $\pi_* \mathcal{O}_Y(\lceil K_Y - \pi^*(K_R + \Delta) + G \rceil)$ is uniformly (Δ, F) -compatible.
 - In particular, the multiplier ideal *J*(Δ) is uniformly (Δ, *F*)-compatible (as is the adjoint ideal).
 - Any center of log canonicity for (*R*, Δ) reduced generically from characteristic zero is uniformly (Δ_ρ, *F*)-compatible.

イロト 不得 とくほ とくほ とう

Background and Definitions A Positive Characteristic Analogue of Log Canonical Centers Applications

Deeper properties and results related to *F*-adjunction New Results in Characteristic Zero

Additional Relations to Test Ideals

The relation to the test ideal (mentioned on the previous page) should not be surprising.

- In [Lyubeznik-Smith], the authors showed that if R = S/I is a domain where S is a regular local ring, then the big test ideal *τ̃_R* corresponds to the smallest ideal J ⊋ I which satisfies (I^[p^e] : I) ⊆ (J^[p^e] : J) for all e > 0.
- In [Blickle-Mustaţă-Smith], the authors show that if *R* is regular, then the test ideal *τ*(*a*^t) is the smallest ideal *J* such that *a*^[tp^e] ⊆ *J*^[p^e] for all *e* > 0.
- We just explained that if *R* = *S*/*I* and α is an ideal of *S*. Then the big test ideal *τ̃*(α^t) corresponds to the smallest ideal *J* ⊋ *I* which satisfies

$$\mathfrak{a}^{\lceil t(p^e-1)\rceil}(I^{[p^e]}:I)\subseteq (J^{[p^e]}:J).$$

for all e > 0.

Additional Relations to Test Ideals

The relation to the test ideal (mentioned on the previous page) should not be surprising.

- In [Lyubeznik-Smith], the authors showed that if *R* = *S*/*I* is a domain where *S* is a regular local ring, then the big test ideal *τ̃_R* corresponds to the smallest ideal *J* ⊇ *I* which satisfies (*I*^[p^e] : *I*) ⊆ (*J*^[p^e] : *J*) for all *e* > 0.
- In [Blickle-Mustaţă-Smith], the authors show that if *R* is regular, then the test ideal *τ*(*a*^t) is the smallest ideal *J* such that *a*^[tp^e] ⊆ *J*^[p^e] for all *e* > 0.
- We just explained that if *R* = *S*/*I* and α is an ideal of *S*. Then the big test ideal *τ̃*(α^t) corresponds to the smallest ideal *J* ⊋ *I* which satisfies

$$\mathfrak{a}^{\lceil t(p^e-1) \rceil}(I^{[p^e]}:I) \subseteq (J^{[p^e]}:J).$$

for all e > 0.

Additional Relations to Test Ideals

The relation to the test ideal (mentioned on the previous page) should not be surprising.

- In [Lyubeznik-Smith], the authors showed that if *R* = *S*/*I* is a domain where *S* is a regular local ring, then the big test ideal *τ̃_R* corresponds to the smallest ideal *J* ⊇ *I* which satisfies (*I*^[p^e] : *I*) ⊆ (*J*^[p^e] : *J*) for all *e* > 0.
- In [Blickle-Mustaţă-Smith], the authors show that if *R* is regular, then the test ideal *τ*(a^t) is the smallest ideal *J* such that a^[tp^e] ⊆ J^[p^e] for all *e* > 0.
- We just explained that if *R* = *S*/*I* and α is an ideal of *S*. Then the big test ideal *τ̃*(α^t) corresponds to the smallest ideal *J* ⊋ *I* which satisfies

$$\mathfrak{a}^{\lceil t(p^e-1)\rceil}(I^{[p^e]}:I) \subseteq (J^{[p^e]}:J).$$

for all e > 0.

ヘロア 人間 アメヨア 人口 ア

Additional Relations to Test Ideals

The relation to the test ideal (mentioned on the previous page) should not be surprising.

- In [Lyubeznik-Smith], the authors showed that if *R* = *S*/*I* is a domain where *S* is a regular local ring, then the big test ideal *τ̃_R* corresponds to the smallest ideal *J* ⊇ *I* which satisfies (*I*^[p^e] : *I*) ⊆ (*J*^[p^e] : *J*) for all *e* > 0.
- In [Blickle-Mustaţă-Smith], the authors show that if *R* is regular, then the test ideal *τ*(a^t) is the smallest ideal *J* such that a^[tp^e] ⊆ J^[p^e] for all *e* > 0.
- We just explained that if *R* = *S*/*I* and *α* is an ideal of *S*. Then the big test ideal *τ̃*(*α*^t) corresponds to the smallest ideal *J* ⊋ *I* which satisfies

$$\mathfrak{a}^{\lceil t(p^e-1) \rceil}(I^{[p^e]}:I) \subseteq (J^{[p^e]}:J).$$

for all e > 0.

ヘロア 人間 アメヨア 人口 ア

Background and Definitions A Positive Characteristic Analogue of Log Canonical Centers Applications

Deeper properties and results related to *F*-adjunction New Results in Characteristic Zero

Results Related to F-Adjunction

Some of these have been mentioned before, but I'd like to repeat them. Suppose that (R, Δ, a^t) is a triple.

- If *I* is uniformly (Δ, α^t, *F*)-compatible, and if *J* ⊃ *I* corresponds to to a uniformly *F*-compatible ideal of *R/I*, then *J* is also uniformly (Δ, α^t, *F*)-compatible.
- If *I* is a proper uniformly (Δ, α^t, F)-compatible ideal that is maximal with respect to containment (among uniformly compatible ideals), then *R*/*I* is strongly *F*-regular.
 - If (R, Δ, α^t) is local but not sharply F-pure, then the maximal such ideal with respect to containment is m.
- If *I* is uniformly (Δ, α^t, F)-compatible and (R, Δ, α^t) is sharply F-pure, then R/I is F-pure.
 - I'd like to try to lift this result to characteristic zero.

Some of these have been mentioned before, but I'd like to repeat them. Suppose that (R, Δ, a^t) is a triple.

- If *I* is uniformly (Δ, a^t, F)-compatible, and if J ⊃ I corresponds to to a uniformly *F*-compatible ideal of *R*/*I*, then *J* is also uniformly (Δ, a^t, F)-compatible.
- If *I* is a proper uniformly (Δ, α^t, F)-compatible ideal that is maximal with respect to containment (among uniformly compatible ideals), then *R*/*I* is strongly *F*-regular.
 - If (R, Δ, α^t) is local but not sharply F-pure, then the maximal such ideal with respect to containment is m.
- If *I* is uniformly (Δ, a^t, F)-compatible and (R, Δ, a^t) is sharply F-pure, then R/I is F-pure.
 - I'd like to try to lift this result to characteristic zero.

Some of these have been mentioned before, but I'd like to repeat them. Suppose that (R, Δ, a^t) is a triple.

- If *I* is uniformly (Δ, a^t, F)-compatible, and if J ⊃ I corresponds to to a uniformly *F*-compatible ideal of *R*/*I*, then *J* is also uniformly (Δ, a^t, F)-compatible.
- If *I* is a proper uniformly (Δ, α^t, F)-compatible ideal that is maximal with respect to containment (among uniformly compatible ideals), then *R*/*I* is strongly *F*-regular.
 - If (R, Δ, a^t) is local but not sharply *F*-pure, then the maximal such ideal with respect to containment is m.
- If *I* is uniformly (Δ, a^t, F)-compatible and (R, Δ, a^t) is sharply F-pure, then R/I is F-pure.
 - I'd like to try to lift this result to characteristic zero.

Some of these have been mentioned before, but I'd like to repeat them. Suppose that (R, Δ, a^t) is a triple.

- If *I* is uniformly (Δ, a^t, F)-compatible, and if J ⊃ I corresponds to to a uniformly *F*-compatible ideal of *R*/*I*, then *J* is also uniformly (Δ, a^t, F)-compatible.
- If *I* is a proper uniformly (Δ, a^t, F)-compatible ideal that is maximal with respect to containment (among uniformly compatible ideals), then *R*/*I* is strongly *F*-regular.
 - If (R, Δ, a^t) is local but not sharply *F*-pure, then the maximal such ideal with respect to containment is m.
- If *I* is uniformly (Δ, a^t, F)-compatible and (R, Δ, a^t) is sharply F-pure, then R/I is F-pure.
 - I'd like to try to lift this result to characteristic zero.

Some of these have been mentioned before, but I'd like to repeat them. Suppose that (R, Δ, a^t) is a triple.

- If *I* is uniformly (Δ, a^t, F)-compatible, and if J ⊃ I corresponds to to a uniformly *F*-compatible ideal of *R*/*I*, then *J* is also uniformly (Δ, a^t, F)-compatible.
- If *I* is a proper uniformly (Δ, α^t, F)-compatible ideal that is maximal with respect to containment (among uniformly compatible ideals), then *R*/*I* is strongly *F*-regular.
 - If (R, Δ, a^t) is local but not sharply *F*-pure, then the maximal such ideal with respect to containment is m.
- If *I* is uniformly (Δ, a^t, F)-compatible and (R, Δ, a^t) is sharply F-pure, then R/I is F-pure.
 - I'd like to try to lift this result to characteristic zero.

・ロト ・ 同ト ・ ヨト ・ ヨト

Some of these have been mentioned before, but I'd like to repeat them. Suppose that (R, Δ, a^t) is a triple.

- If *I* is uniformly (Δ, a^t, F)-compatible, and if J ⊃ I corresponds to to a uniformly *F*-compatible ideal of *R*/*I*, then *J* is also uniformly (Δ, a^t, F)-compatible.
- If *I* is a proper uniformly (Δ, α^t, F)-compatible ideal that is maximal with respect to containment (among uniformly compatible ideals), then *R*/*I* is strongly *F*-regular.
 - If (R, Δ, a^t) is local but not sharply *F*-pure, then the maximal such ideal with respect to containment is m.
- If *I* is uniformly (Δ, a^t, F)-compatible and (R, Δ, a^t) is sharply F-pure, then R/I is F-pure.
 - I'd like to try to lift this result to characteristic zero.

・ロト ・ 同ト ・ ヨト ・ ヨト

R/*I* is of Dense *F*-Pure Type

In fact, the result does lift. Suppose that *R* is a ring of finite type over \mathbb{C} .

Theorem. Suppose that (R, Δ) has dense *F*-pure type (which is conjecturally equivalent to being log canonical) and I is an intersection of centers of log canonicity (a scheme-theoretic union). Then R/I also has dense *F*-pure type (in particular it has Du Bois singularities).

Proof.

Reduce (R, Δ) together with *I* and a log resolution, to a family of characteristic p > 0 models. The ideals $\{I_p\}$ in the family corresponding to *I* are uniformly (Δ_p, F) -compatible (this can be seen in several ways). Thus R_p/I_p is *F*-pure for an infinite set of *p*.

Background and Definitions A Positive Characteristic Analogue of Log Canonical Centers Applications

Deeper properties and results related to *F*-adjunction New Results in Characteristic Zero

Happy Birthday Mel

Happy Birthday Mel!¹

¹two days belated Happy Birthday Mel!

A Geometric Characterization of (generalizations of) *F*-Ideals