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Abstract. We first construct and give basic properties of a fibered coproduct
in the category of ringed spaces (which is just a particular type of colimit). We
then look at some special cases where this actually gives a fibered coproduct
in the category of schemes. Intuitively this is gluing a collection of schemes
along some collection of other schemes (possibly subschemes). We then use
this to construct a scheme without closed points.

1. Introduction

This paper is in essence a look at a naive attempt to glue schemes together.
I define first a fibered coproduct in the category of ringed spaces (this is just a
special type of colimit). This particular coproduct is the natural generalization of
gluing schemes along open subschemes. In the case of gluing only two schemes
together, this coproduct is simply the pushout of the topological spaces combined
with the appropriate pullback of the rings. This method, as we will see, does not
always produce a scheme even when the ringed spaces involved are schemes and
the morphisms between them are morphisms of schemes. However we will examine
several cases where this colimit is a scheme.

If we glue two affine schemes together using this method and the object along
which we are gluing is a closed subscheme of one of the two schemes, the resulting
coproduct is in fact an affine scheme (Theorem 3.4). Furthermore since every
scheme is a ringed space we see that a fibered coproduct exists in the category
of schemes at least in this case. This theorem has many immediate and perhaps
unexpected consequences. First it allows us to glue two abstract schemes together
along a common closed subscheme without first embedding the schemes in any
ambient space. It allows us to contract any closed subscheme of an affine scheme
over a field k, to a point. We do this by gluing the closed subscheme we wish to
contract to a k-point. In particular, although it is well known that a line on P2
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cannot be contracted, we will see explicitly that a line on A2 can be (even though
the resulting scheme will not be noetherian).

A more specialized application of this method is gluing together a finite collec-
tion of closed (but not necessarily reduced) points of an affine scheme over a field
k. This can be generalized to gluing together a finite collection of closed points in
a quasi-projective variety because in that case every finite collection of points is
contained in a single affine open subset. Specifically, if we glue two distinct single
points of A1

k to a single k-point using this method we get a nodal cubic. If we glue
a double point k[x]/(x2) to a single k-point, we get a cuspidal cubic. This method
gives us control over how the points are identified and lets us glue abstractly without
first mapping the scheme into some projective space.

Another case where 3.4 can be directly applied is if we remove a part of an
affine scheme via some localization (inverting certain elements). Then we can glue
back a closed subscheme of the original affine scheme to recover some of the points
that were removed (those that sat on the closed subscheme we glued back on).
These points however have some topological oddities associated with them. In
the resulting scheme we can only get to those recovered points along the scheme
we glued back. See Proposition 2.6, Corollary 3.13, and Example 3.14. Readers
interested in these gluing methods may also want to look at connections to [1] (6.1).

Finally as a corollary of 3.4, we give an example of a scheme without closed
points. We then look at an alternate construction of the same scheme using valu-
ation rings. This second construction was also independently suggested to Arthur
Ogus by Offer Gabber and the details were verified by Bjorn Poonen [4], but to my
knowledge it has not been published. We also mention results by Mel Hochster [5]
which imply the existence of a scheme without closed points. The schemes without
closed points discussed in this paper are, however, very explicit and constructive.

This paper is self contained. For basic properties of schemes see [3]. Basic
categorical definitions can be found in [6]. Algebraic results including a discussion
of the limit and colimit of a diagram of rings can be found in [2].

Acknowledgements:
Special thanks to Sándor Kovács

2. A fibered coproduct in the category of ringed spaces and basic
properties

We assume that all rings are commutative with unity and maps between rings
send 1 to 1.

Suppose {Xi}i∈I is a collection of ringed spaces and for each (unordered) pair
i, j ∈ I there exists a ringed space Zi,j and morphisms of ringed spaces φ(i,j),i :
Zi,j → Xi and φ(i,j),j : Zi,j → Xj .

Definition 2.1. We define the union of the Xi’s along the Zi,j ’s (which we
from now on will denote as ∪Zs,tXi or when there are only two sets to glue, X∪Z Y )
as the set

∐
Xi/ ∼ where the relation is generated by relations of the form xi ∼ xj

(xi ∈ Xi, xj ∈ Xj) if there exists z ∈ Zi,j such that φ(i,j),i(z) = xi and φ(i,j),j(z) =
xj . Thus two points xi ∈ Xi and xj ∈ Xj are identified if and only if there exists a
finite chain xnt ∈ Xnt where t = 1 . . . m with xi = xn1 and xj = xnm and for each
pair (nt, nt+1) we have a znt,nt+1 ∈ Z such that φ(nt,nt+1),nt

(znt,nt+1) = xnt and
φ(nt,nt+1),nt+1(znt,nt+1) = xnt+1 as above. Note that it is possible that i = j. We
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give it the strongest topology such that the natural maps αs from Xs to ∪Zi,j Xi

are all continuous. We will now put a presheaf on the union (we will see later that
this is already a sheaf). On each open U ⊂ ∪Zi,j Xi note that α−1

i (U) is an open
subset of Xi and that φ−1

(i,j),i(α
−1
i (U)) = φ−1

(i,j),j(α
−1
j (U)). Define Γ(U,O∪Zs,tXi) to

be the subring of the direct product
∏

i∈I α−1
i (U) consisting of all tuples (ai)i∈I

such that φ]
(i,j),i(ai) = φ]

(i,j),j(aj) (where in this case the ] notation refers to the
ring map portion of φ) for all pairs i, j ∈ I; in other words, the set of all sections
of the Xi that agree on the Zi. Restriction maps will be simply those induced
by the restriction maps on the Xi. If I is empty we define ∪Zs,tXi as the empty
scheme. ¤

In the case where there are only two Xi’s, all we have done here is pushout the
topological spaces and pullback the sheaf structure. In the general case this is just
a special type of colimit in the category of ringed spaces. We will now show that
the above construction is already a sheaf.

Proposition 2.2. ∪Zi,j
Xi is a ringed space.

Proof: Let δi,j : Zi,j → ∪Zi,j Xi be the composed map αi ◦ φ(i,j),i = αj ◦ φ(i,j),j

(of topological spaces). Choose an ordering on the set indexing the i’s (which
index the Xi’s). Then we simply note that O∪Zij

Xi is just the kernel of the
map

∏
(αs)∗OXs →

∏
i>j(δi,j)∗OZi,j which sends an element (. . . , xi, . . . , xj , . . .)

to (. . . , φ]
(i,j),i(xi) − φ]

(i,j),j(xj), . . .). Kernels of maps are always sheaves, so the
presheaf O∪Zi,j

Xi is a sheaf.

This gives us morphisms of ringed spaces from the Xi to ∪Zi,j Xi (via the
αi) where (on the rings) we simply project to each coordinate. In the same way
we get morphisms γi,j from Zi,j to ∪Zi,j Xi, those being the composition maps
αi ◦ φ(i,j),i = αj ◦ φ(i,j),j .

This procedure does not in general produce a scheme even if the Xi and Zi,j are
schemes. Furthermore, even when it does it may not produce a noetherian scheme
even if the all the schemes being glued together are noetherian. The advantage of
this definition is that it immediately gives us the following universal property.

Theorem 2.3. Suppose that W is a ringed space and there exists maps ψi :
Xi → W for each i ∈ I such that each square of the form

Zi,j

φ(i,j),j

!!B
BB

BB
BB

B
φ(i,j),i

}}||
||

||
||

Xi

ψi

!!CC
CC

CC
CC

Xj

ψj

}}{{
{{

{{
{{

W

commutes. Then the maps ψi factor through the natural maps αi to Y = ∪Zi,j Xi,
inducing a unique map δ : ∪Zs,tXs → W so that the following diagrams commute
for each i, j ∈ I.
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ψj
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∪Zs,tXs

δ

²²
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Proof: The proof of this fact is an easy consequence of the definition. ¤
Let us now record some basic properties of this construction.

Lemma 2.4. The open (closed) subsets ∪Zi,j Xi, i ∈ I correspond bijectively to
tuples (Ui)i∈I of open (closed) subsets of the Xi such that φ−1

(i,j),i(Ui) = φ−1
(i,j),j(Uj)

Proof: Clearly a subset U ⊂ ∪Zi,j Xi is open if and only if its pre-image in all
the Xi’s is open, but it is less clear that given such a tuple (Ui) as described
above, there is an open subset that pulls back to it. In fact, we will show that
the set U =

⋃
αi(Ui) has the desired property. So suppose xi ∈ α−1

i (U). We
need only show that xi ∈ Ui. Since αi(xi) ∈ U , there exists xj ∈ Uj with αj(xj)
identified with xi in

∐
Xi. Without loss of generality let Xi = X1 and Xj = Xn

so that there exist yt ∈ Xt (1 ≤ t ≤ n) with xi = y1 ∼ y2 ∼ . . . ∼ yn = xj

where for each pair yt, yt+1 we have zt,t+1 ∈ Zt,t+1 mapping to yt and yt + 1
respectively. Note that some of Xt might equal other Xt (ie X1 might equal X7).
Now by assumption xj = yn ∈ Un = Uj , thus zn−1,n ∈ φ−1

(n,n−1),n(Un) so yn−1 =
φ(n−1,n),n−1(zn−1,n) ∈ φ(n−1,n),n−1(φ−1

(n−1,n),n(Un)) ⊂ Un−1. Continuing in this
fashion we get xi = y1 ∈ U1 = Ui as desired. ¤

Lemma 2.5. Let φ : Z → X and ψ : Z → Y be morphisms of ringed spaces and
let α : X → X ∪Z Y and β : Y → X ∪Z Y be the induced maps. Suppose that φ (or
ψ) is a homeomorphism onto its image. Then so is β (or α).

Proof: This follows directly from the universal property.

Proposition 2.6. Let X, Y and Z be as in the previous lemma with the maps
between them labelled in the same way. Now suppose that ψ is a homeomorphism
onto its image and that Z is a Zariski space (noetherian and every irreducible closed
set has a unique generic point). Then if x ∈ X and y ∈ Y and if β(y) ∈ {α(x)}−
then there exists z ∈ Z such that y ∈ {ψ(z)}− and φ(z) ∈ {x}−.

Proof: First note that since ψ is a homeomorphism onto its image, α is also, which
implies that {x}− = α−1({α(x)}−). Now look at φ−1({x}−). If this is empty
then α({x}−)∪ β(∅) would be closed, in which case β(y) ∈ α({x}−). However, the
points of {x}− ∈ X cannot be identified with any points of Y since φ−1({x}−) =
∅ which contradicts our assumption β(y) ∈ {α(x)}−. So we may assume that
φ−1({x}−) 6= ∅. Since ψ is a homeomorphism onto its image, every closed subset
of Z arises as the inverse image of a closed subset of Y , (including the inverse
images of closed subsets of X). Then because β(y) is in the closure of α(x), by
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2.4, for every closed subset of V ⊂ X containing x, each closed subset (there
exists at least one) W of Y such that ψ−1(W ) = ψ−1(V ) contains y. In particular
ψ(φ−1({x}−))− contains y. Since Z is Zariski and φ−1({x}−) is closed we can
write φ−1({x}−) = Z1 ∪ . . . ∪ Zn for irreducible closed sets Zi with generic points
zi ∈ Zi. Thus y ∈ ψ(Z1 ∪ . . . ∪ Zn)− = ψ(Z1)− ∪ . . . ∪ ψ(Zn)− which implies that
y ∈ ψ(Zi)− for some i. Since continuous maps preserve specialization (points being
in the closure of other points) we conclude that y ∈ {ψ(zi)}−. On the other hand
φ(zi) ∈ {x}−, which completes the proof. ¤

We will now prove a result saying we do not have to glue all at once.

Proposition 2.7. Let Xi and S = {Zi,j} be as in definition at the start of the
section. Suppose I = I ′ ∪ I ′′ and I ′ ∩ I ′′ = ∅. Let S′ be the subset of S where both
indices of Zi,j are in I ′ and let S′′ be the subset of S where both indices of Zi,j are
in I ′′. Let S0 = S − (S′ ∪ S′′). Let Z =

∐
S0

Zi,j (as a topological space this is just
the disjoint union and on the rings we simply take direct products). Let X ′ = ∪S′Xi

where in this union the Xi are indexed by I ′. Likewise let X ′′ = ∪S′′Xi. Then there
exist maps φ′ : Z → X ′ and φ′′ : Z → X ′′ induced by the Zi,j’s making up Z and
X ′ ∪Z X ′′ ∼= ∪Zi,j Xi.

Proof: This is a direct consequence of the definition or from the fact that colimits
commute with colimits. ¤

Obviously we could take more general partitions as well. This proposition is
the computational tool I will use to compute all examples where more than two
schemes are glued to together.

Finally I need an algebraic lemma.

Lemma 2.8. Finite Limits in the category of commutative rings commute with
localization. By this we mean if B is a finite diagram (a finite number of objects
and arrows) in CRng, the category of commutative rings, with limit C, and S is a
multiplicative set in C, then lim(S−1B) = S−1C.

Proof: Note first that B can be viewed as a diagram of C algebras and also that
lim(S−1B) is a S−1C algebra by the universal property of the limit [2]. Consider
now the category of all C algebras. Clearly C = lim B in that category as well.
Also note that since lim S−1B is a S−1C algebra, the limit of that diagram in the
category of commutative rings is the same as that in the category of S−1C algebras.
We have a functor from C algebras to S−1C algebras which is localization by S,
(or tensoring over C by S−1C). By Eisenbud [2] (A6.1) if we wanted to show that
localization commuted with limits, it would be enough show that localization by
S commutes with products and equalizers. Since we only need to show it com-
mutes with finite limits, it is enough to show that localization commutes with finite
products and equalizers (Eisenbud’s proof works in either case).

Clearly localization commutes with finite products (but note that localization
does not commute with infinite products). Therefore suppose that that

C1

φ1 **

φ2

44 C2

is a diagram of C algebras. Then the equalizer (the limit of that diagram) is just
{c ∈ C1|φ1(c) = φ2(c)}. This can also be viewed as the kernel K of the map of C
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modules φ1 − φ2 : C1 → C2. Likewise the equalizer of the induced diagram

S−1C1

φ1
,,

φ2

22 S−1C2

is just the kernel K ′ of φ1 − φ2 = (φ1 − φ2) : S−1C1 → S−1C2. But localization is
exact so S−1K = K ′ as desired.

¤

3. An Application to Schemes

We will now use this construction to glue schemes together. Unless otherwise
noted, for the rest of the paper X, Y , and Z will be schemes, φ will be a map from
Z to X and ψ will be a map from Z to Y .

Before we actually do any computations we need to make one more observation.
Suppose that we have X, Y and Z as above and there exist open U ⊂ X, V ⊂
Y such that W = φ−1(U) = ψ−1(V ). Then U ∪W V is isomorphic to (X ∪Z

Y )|α(U)∪β(V ). Topologically this is clear (note what the open subsets of U ∪W V

are). The sections are naturally identified as well.

Example 3.1. (Gluing along open sets) Suppose φ and ψ are open immersions.
Then X ∪Z Y is easily seen to be the standard gluing of X and Y along Z and thus
a scheme. ¤

Now let us look at an example where the prime specturms of the pullback in
the category of rings is not the corresponding pushout in the category of schemes.
We will also see in this example that the pushout in the category of ringed spaces
does not produce a scheme.

Example 3.2. Let X = Spec k[x, y, y−1], Y = Spec k[x, y](x,y), and Z =
Spec(k[x, y](x,y)[y−1]). Thus X is the plane without a line, Y is the local ring
of the origin, and Z is the local ring of the origin with the line y = 0 missing and
thus of course the original (closed) point missing as well. Let the maps φ and ψ
be those induced by inclusions. First note that if one simply pulls back the rings,
one gets k[x, y], the spectrum of which is A2

k. This is not a pushout in the cate-
gory of schemes because one can certainly factor through A2

k − (1, 0) where (1, 0)
is the point corresponding to the maximal ideal (x− 1, y). Now let us consider the
pushout in the category of ringed spaces. On any open neighborhood of the origin
in X∪Z Y , the corresponding open subset of Y must be all of Y since the only open
subset of a local ring that contains the maximal ideal is the entire space. Therefore
y must not be invertible in that open set. If we take the spectrum we pick up an
open dense subset of the line y = 0 in the plane A2. None of these points (except
the origin itself) are in X ∪Z Y , so we do not have a scheme. ¤

We have just seen how the coproduct in the category of ringed spaces can fail
to be a scheme because it has fewer points than the spectrum of sections suggest
(even locally). Now let us consider an example where the coproduct in the category
of ringed spaces fails to be a scheme because the topology of the coproduct in the
category of ringed spaces is too strong to be a scheme, even though all the points
are accounted for.
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Example 3.3. (Gluing along an open/closed subscheme) Suppose X = A2
k =

Spec k[x, y] and Z = X − {0} where 0 is the origin. Also let Y = A3
k − {0} =

Spec k[x, y, z] − {0}. Let the maps φ and ψ be the natural ones, where φ is an
open immersion and ψ is a closed immersion. We will show that X ∪Z Y is not
a scheme. Let P be the origin of X (the point missed by φ). Each neighborhood
of P in X ∪Z Y corresponds to a pair of open sets U ⊂ X and V ⊂ Y such that
φ−1(U) = ψ−1(V ). But for any such pair with P ∈ U , V cannot be affine and the
prime spectrum of the sections of V will contain the missing origin point. Note
that the sections of U ⊂ X and φ−1(U) ⊂ Z are isomorphic for each U so gluing
to X neither adds nor removes any new sections besides those associated with Y ,
i.e. for each open set U ∪W V ⊂ X ∪Z Y , the sections OX∪ZY (U ∪W V ) = OY (V ).
However, the topology on X ∪Z Y is too strong for this to be a scheme since not
every line (which we think of going through the origin in A3) actually contains the
origin of X ∪Z Y in its closure as per proposition 2.6. In particular the line Z
corresponding to z = 0 in Y ⊂ A3 does not contain P in it’s closure in X ∪Z Y
since φ−1(∅) = ψ−1(Z). So that the line minus the point is a closed set. ¤

We have just seen how the topology of the pushout of topological spaces may
be stronger than that given by the functions. Now we will give a case where the
pushout in the category of ringed spaces is a pushout in the category of schemes.
This is the main theorem in the section and all other results in this section follow
from it fairly directly. We will also apply it (repeatedly) to produce a scheme
without closed points.

Theorem 3.4. Suppose A and B are rings. Further suppose I is an ideal of A
and there exists a map γ from B to A/I. We will denote the quotient map from A
to A/I by π. Let X = Spec A, Y = Spec B and Z = Spec A/I, so that Z is a closed
subscheme of X. Then X ∪Z Y is an affine scheme with Y a closed subscheme,
(X ∪Z Y )− Y ∼= X − Z, and the maps α : X → X ∪Z Y and β : Y → X ∪Z Y are
morphisms of schemes.

Informally we are going to glue Y = Spec B onto X along Z (the map from Z
to Y is the one induced by γ). This will replace Z with Y (whatever that might
mean) while keeping X ∪Z Y an affine scheme.
Proof: First let us look at what X∪Z Y will look like as a set. Since φ : Z → X is a
homeomorphism onto its image β : Y → X ∪Z Y is also. Since Z is a closed subset
of X and we are gluing along Z, we see that X must remain the same outside of
Z. Furthermore Z will be replaced by Y via the map ψ : Z → Y induced by γ.

Since I am claiming X ∪Z Y is affine let us look first at the global sections.
The global sections are C = {(a, b) | a ∈ A, b ∈ B, a + I = γ(b)}. Let the maps
C → A, C → B induced by restricting to each coordinate be denoted by f and g
respectively. Let J = {(a, 0) ∈ C} = ker g and let J ′ = {(0, b) ∈ C} = ker f . It
is then easy to see that C/J ∼= B with this isomorphism being induced by g. We
can view C/J ′ as a subring of A and in fact it can be thought of as B[I] if A is a
B-algebra and π is a map of B-algebras (note A/I is already a B-algebra via γ).
In any case we can associate C/J ′ with π−1(γ(B)). In the future we will denote
π−1(γ(B)) = im(C/J ′) ⊂ A as B′.

Let P be a prime ideal of C. Since JJ ′ = (0), P must contain either J or J ′. If
P contains J then P corresponds via g to a prime ideal in B. On the other hand if
P does not contain J then it must contain J ′, so it corresponds to a prime ideal Q′
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of B′. Since P didn’t contain J , Q′ cannot contain I since J = {(I, 0)}. Thus there
exists a ∈ I, a /∈ Q′. Then Q′ corresponds to a prime ideal of B′[a−1] = A[a−1]
since a ∈ I. So P corresponds to a prime ideal Q of A. Note that by the naturality
of this chain we have f−1(Q) = P and the Q satisfying this property is unique.
Thus at least as a set, Spec C corresponds to (X − Z) ∪ Y and the maps f and g
induce the expected correspondences.

Now we need to show that this correspondence is in fact a homeomorphism of
topological spaces. Let W be a closed subset of the topological space of X ∪Z Y .
Thus α−1(W ) and β−1(W ) are closed subsets of X and Y respectively so they are
cut out by ideals K ⊂ A and K ′ ⊂ B. Let L = f−1(K) ∩ g−1(K ′) ⊂ C. I will
show that the points cut out by L are precisely the points of W . First suppose
P is a prime ideal of C corresponding to a point of W . Then P comes from a
point in X or from a point in Y so it is either a point of α−1(W ) or of β−1(W ).
Thus the appropriate corresponding prime of A or B contains either K or K ′ so it
follows that P must contain L. On the other hand, suppose P is a prime ideal of
C containing L. Then P must contain f−1(K) or g−1(K). If P contains g−1(K ′)
then it must also contain J = ker g ⊂ g−1(K ′) so that P corresponds to an element
of β−1(W ). If P contains f−1(K) and does not contain J then P corresponds
to a prime of A containing K, that is an element of α−1(W ). The one case we
must worry about is if P contains both f−1(K) and J . In this case I will show
that P contains g−1(K ′) which puts P in the first case again. In particular it is
enough to show that K ′ ⊂ g(P ) since g surjects and P contains J = ker g. Note
that

√
γ(K ′)A/I =

√
π(K) since the inverse images of W in Z must be the same

whether we take inverse images through X or Y . Now take b ∈ K ′ ⊂ B, then
γ(b) ∈ γ(K ′) ⊂

√
π(K) so γ(bn) ∈ π(K) for some n. Choose a representative

a + I = γ(bn) so that a ∈ K. Then (a, bn) ∈ C. Since a ∈ K and bn ∈ K ′ we have
(a, bn) ⊂ L which implies (a, bn) ∈ P so bn ∈ g(P ) and since g(P ) is still prime we
conclude b ∈ g(P ) as desired. Therefore, since the topology on X ∪Z Y was chosen
to be the strongest possible, the correspondence we established between SpecC and
X ∪Z Y is a homeomorphism.

Next we need to show that X ∪Z Y and Spec C are isomorphic as schemes.
We need only work on the affine open sets Spec Cc since these sets form a basis.
If c = (s, t) ∈ C then we need to show that the natural map of Cc to the global
sections of (X − V (s)) ∪(Z−V (s+I)) (Y − V (t)) is an isomorphism. But this is just
lemma 2.8.

Finally we see that since the maps between the ringed spaces α : X → X ∪Z Y
and β : Y → X ∪Z Y are induced by maps of the global sections of these affine
schemes we see that α and β are morphisms of schemes as desired. ¤

Theorem 3.5. The scheme constructed in 3.4 is a pushout (fibered coproduct)
in the category of schemes.

Proof: We already know it is a scheme, so we need to show that for any scheme S
and for any diagram
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with induced map δ (a map of ringed spaces), that δ is a map of schemes. Note all
other maps are maps of schemes. First let S′ ⊆ S be an open affine subset. Then
δ−1(S′) is open. We can pick an affine open subset of X ∪Z Y contained in it which
is a localization of the scheme X ∪Z Y . We can of course cover δ−1(S′) which such
subsets. The corresponding pre-images in X, Y , and Z are localizations also and
thus are affine schemes. In this way we may assume without loss of generality that
S = S′ is affine since a morphism of ringed spaces which is locally a morphism of
schemes is a morphism of schemes.

Therefore let X = Spec A, Y = SpecB, Z = Spec A/I, X ∪Z Y = Spec C, and
S = Spec R. We need only show that the map of ringed spaces X ∪Z Y → S is
induced by d : R → C (the map on global sections). Let us denote the maps R → A
and R → B by h and h′ respectively. We have the diagram of rings

A B

C ⊂ A⊕B

eeKKKKKKKKKK

99 99ssssssssss
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d

OO
h

SS
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Given a prime P ⊂ C, consider d−1(P ). Tracing through the correspondences
in the proof of 3.4 we see that d−1(P ) is either h−1 or h′−1 of a prime in A or
B respectively such that P is the inverse image. This implies that the map of
topological spaces X ∪Z Y → S is induced by the map of rings.

To see that the map of ringed spaces really is a map of schemes choose an
open affine Spec Rr = U ⊂ S, where Rr is a localization of R at r. Let c =
(h(r), h′(r)) ∈ C. Since we already have the correspondence of topological spaces,
δ−1(U) = Spec Cc. Then we have the above diagram with Ah(r), Bh′(r), Cc and
Rr. All we need to show is that d : R → C induces d̃ : Rr → Cc coming from the
map of ringed spaces. But d(x) = (h(x), h′(x)) so d induces the map (x/rn) 7→
(h(x), h′(x))/cn = (h(x)/an, h′(x)/bn) = d̃(x/rn) by the end of the proof of 3.4.
Therefore δ is a map of schemes as desired. ¤

Corollary 3.6. (Contracting a closed set to a point in an affine scheme) Let
A, I, and B be as above and further assume that A is a k algebra and that B = k.
Then X∪Z Y is isomorphic to Spec A outside of Spec A/I and the closed subscheme
Spec A/I is contracted to a point.



10 KARL SCHWEDE

Proof: Direct from 3.4. ¤
Example 3.7. (Contracting a line in A2

k). Let A = k[x, y], I = (x), B = k,
then X∪Z Y = Spec k[x, xy, xy2, xy3, . . .]. This is A2

k with the line x = 0 contracted
to a point. Note that in this case the resulting scheme is not noetherian even though
the originals were. ¤

Example 3.8. (Gluing points on A1
k) Let A = k[x] and let I = ((x−1)(x+1));

then X ∪Z Y is easily seen to be isomorphic to the nodal cubic. If I = (x2) then
X ∪Z Y is the cuspidal cubic. ¤

We are going to use 3.4 to glue along closed subschemes of arbitrary schemes.

Corollary 3.9. (Gluing closed subschemes in general) Suppose Z is a closed
subscheme of both X and Y . Then X ∪Z Y is a scheme.

Proof: Outside of Z we must have a scheme, so choose x ∈ X in the image of Z
with z ∈ Z such that φ(z) = x. Choose an affine open U ⊂ X with x ∈ U . Then
φ−1(U) is an open affine subset of Z. Since ψ : Z → Y is a homeomorphism onto
its image there exists an open W ⊂ Y such that ψ−1(W ) = φ−1(U). Choose an
affine subset V of W such that ψ(z) ∈ V . Then ψ−1(V ) is an affine subset of
φ−1(U). Then there exist further affine subsets (localizations in fact from U and
V ) V ′ ⊂ V , U ′ ⊂ U such that z ∈ φ−1(U ′), ψ−1(V ′) and φ−1(U ′) = ψ−1(V ′). Then
U ′ ∪φ−1(U ′) V ′ is an open neighborhood of x in X ∪Z Y . But by 3.4, that is affine.
Thus X ∪Z Y is locally affine so it is a scheme. ¤

In fact it is not hard to see that if X and Y are closed subschemes of an ambient
scheme and if Z is the scheme corresponding to the intersection (whose ideal sheaf
is the sum of X and Y ’s ideal sheaves) then X ∪Z Y in fact corresponds to the
scheme cut out by the intersection of the ideal sheaf of X with the ideal sheaf of
Y . At this point it would be natural to wonder whether we can glue more than two
schemes together (perhaps along closed subsets) and still get a scheme. We shall
next give an example when this does indeed happen, although not always in the
way we expect. First we need a lemma that slightly improves 3.4

Lemma 3.10. Suppose X = Spec A and Y = Spec B are affine schemes and
suppose the scheme Z = Spec C maps to them via the maps φ and ψ as before.
Further suppose imA ⊂ imB ⊂ C and that ψ is a closed map (of topological
spaces). Then X ∪Z Y is an affine scheme with X as a closed subscheme.

Proof: To prove this we just reduced to the case of 3.4. Let W = Spec(im B).
Immediately we notice that we have the following diagram.

Z

φ

¯¯

ψ

µµ

δ

²²
W

φ′zzvvvvvvvvv

ψ′ $$HHHHHHHHH

X
α

##HHHHHHHHH Y
β

{{vvvvvvvvv

X ∪Z Y
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where the map δ is induced by the inclusion of imB into C, thus W is just the
closure of the image of Z in X, but since ψ is closed this is just the image of ψ, and
so δ is surjective as well. First let us show that X ∪W Y and X ∪Z Y are the same
as topological spaces. Since δ is surjective no additional relations are added and
by the factorization all original relations are kept; thus X ∪W Y and X ∪Z Y are
identified as sets. To see that they are identified topologically too, we recall 2.4 and
note that if U ⊂ X and V ⊂ Y are open subsets such that φ−1(U) = ψ−1(V ) then
φ′−1(U) = δ(φ−1(U)) = δ(ψ−1(V )) = ψ′−1(V ) again since δ is surjective. Likewise
if φ′−1(U) = ψ′−1(V ) we have that φ−1(U) = δ−1(φ′−1(U)) = δ−1(ψ′−1(U)) =
ψ−1(U). Now we will show that they are isomorphic as sheaves. Choose an open
subset of X ∪W Y corresponding to a pair U ⊂ X, V ⊂ Y . Then the sections of
this are the sections that agree in W . But since δ] is an injective map of sheaves,
these are just the sections that agree in Z as desired. However now we are in the
case of 3.4 so X ∪Z Y = X ∪W Y is an affine scheme. ¤

We will now see that if we have a collection of closed subsets of a scheme we can
glue them together along their intersections to get a scheme. However, as we will
see, this scheme is not always a closed subscheme of the ambient space, although it
does always map there (via the universal property).

Theorem 3.11. Suppose Y is a scheme and X1, . . . , Xn are closed subschemes.
Let us denote by Zi,j the closed subscheme corresponding to the intersection of Xi

and Xj. Then ∪Zi,j Xi is a scheme and the Xi are closed subschemes.

Proof: Without loss of generality we may assume that Y is affine (say equal to
Spec A) since we can always restrict. Let us denote by Ii the ideal corresponding
the Xi so that Zi,j = Spec(A/(Ii + Ij)). We will proceed by induction on n. The
base case is clear so suppose we can glue up to n closed subschemes. Let Xn+1

be another closed subscheme corresponding to an ideal In+1. Let us denote X =
(∪Zi,j ,1≤,i,j≤nXi) = Spec B and Z =

∐n
i=1 Zi,n+1 = Spec C = Spec⊕n

i=1A/(Ii +
In + 1). Then by proposition 2.7 we have ∪Zi,j ,1≤,i,j≤n+1Xi = Xn+1 ∪Z X. By
the universal property 2.3 we see that there are maps A → B → C however we
also have A → A/(In+1) → C with the first map surjective. Thus im A/(In+1 ⊂
imB ⊂ C so we can apply lemma 3.10 which shows ∪Zi,j Xi is a scheme. The
lemma also guarantees that each Xi is a closed subscheme since the choice of Xn+1

was arbitrary. ¤

Example 3.12. As noted above, the scheme constructed this way is not always
a subscheme of the ambient space (Y in the notation of 3.11). For example let
Y = A2 = Spec k[x, y], X1 = Spec k[x, y]/(x), X2 = Spec k[x, y]/(y), and X3 =
Spec k[x, y]/(x − y). Now all of the Zi,j ’s are just Spec k = Spec k[x, y]/(x, y). If
we glue all three of the lines together simultaneously we get a scheme isomorphic
to Spec k[x, y, z]/(x, y)∩ (x, z)∩ (y, z) which is not equal to Spec k[x, y]/(x)∩ (y)∩
(x − y) since the dimension of the tangent space at the intersection point of the
first is three and the dimension at the intersection point of the second is two.
However if we replace the Xi’s by schemes with embedded points at the intersection
points, that is X1 = Spec k[x, y]/(x2, xy), X2 = Spec k[x, y]/(y2, xy) and X3 =
Spec k[x, y]/((x−y)2, x2−y2) the scheme obtained by gluing all three simultaneously
is k[x, y, z]/(x) ∩ (y) ∩ (x− y). ¤

We will now continue on with some other corollaries of 3.4
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Corollary 3.13. (Gluing a closed subset of Spec R to Spec S−1R) Let R be a
ring, S a multiplicative subset of R, and J an ideal of R. Then we let A = S−1R,
B = R/J , and let the ideal I of A be S−1J . Then X ∪Z Y can be identified (as
sets) as the union of Spec S−1R and R/J .

Note that while we can make this identification as sets, the topology may be
stronger than we might expect. We see this in the next example.

Example 3.14. As in the above corollary let R = k[x, y], S = {1, y, y2, . . .}
and let I = (x). Then X ∪Z Y = Spec k[x, y, x

y , x
y2 , . . .] and this scheme looks like

A2 minus the line y = 0 but with the origin put back in (actually the whole line
x = 0 was put in, but most of it was already there). However, there is a topological
pathology created. Proposition 2.6 tells us that the only curves going through the
origin must now contain x = 0 in their closure. For example the line corresponding
to x − y = 0 now misses the origin. We can see this algebraically since the ideal
(x − y) = (y)(x

y − 1) and (x
y − 1) which is the corresponding prime ideal clearly

doesn’t go through the origin m = (x, y, x
y , x

y2 , . . .) / k[x, y, x
y , x

y2 , . . .]. If we took
I = (y) instead in an attempt to glue back the line we removed, we notice that Z
becomes the empty scheme, so we have only the disjoint union of the plane minus
a line and the line. ¤

Let us conclude with another example which illustrates the gluing procedure
of 3.4.

Example 3.15. In this example let X = A2
k = Spec k[x, y], Y = A1

k =
Spec k[x2], and Z = Spec k[x, y]/(y) = Spec k[x] = A1

k. Let all the maps be those
induced by the obvious maps of rings (k[x2] ⊂ k[x] and k[x, y] → k[x, y]/(y)).
Then X ∪Z Y is a rational surface with the line y = 0 folded over on itself. The
global sections are just k[y, xy, x2] = k[a, b, c]/(a2c − b2) which is a pinch point
singularity. ¤

4. A scheme without closed points

In this section we will give two constructions of a scheme without closed points.
We will utilize the gluing methods from the previous section, the other will use
valuation rings. The two schemes we get in this section are easily seen to be the
same.

Proposition 4.1. If X is a quasi-compact scheme then X has a closed point.

Proof: Since X is quasi-compact there is a cover by affine {Ui}, Ui = Spec Ai. Take
a maximal ideal (closed point) P1 of U1. If P1 is closed in X we are done. If not,
take P2 to be any point (besides P1 itself ) in its closure. Now P2 is in some Ui

(but not U1) so without loss of generality say P2 is in U2. If P2 is closed we are
done. If not take a point P3 in its closure. Again P3 is in one of the Ui’s but this
time it cannot be in either U1 or U2 (since it is in the closure of both P1 and P2),
so without loss of generality we say P3 ∈ U3. This process must stop since there
are only finitely many Ui, so X has a closed point. ¤

First we will construct a scheme without closed points using 3.4 and 2.7.

Theorem 4.2. Let An = (k(xn+1, xn+2, . . .))[xn](xn). Note that this is a DVR
with generic point Pn−1 = Zn−1,n = Spec k(xn, xn+1, . . .) and closed point Pn =
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Spec k(xn+1, xn+2, . . .). Let Xn = Spec An. Note that Xn’s closed point is identified
with Xn+1’s generic point so the Zi,j notation is justified. Let all other Zi,j’s be the
empty scheme. Let us denote the ringed space ∪Zi,j Xn by X. Then X is a scheme.

We will prove this by repeated application of theorem 3.4.
Proof: First notice that what we are doing is gluing DVR’s end to end (closed
point to open point) in infinite succession. What we have is a succession of points
P0, P1, P2, . . . with each Pi in the closure of all previous P ’s. Thus clearly X has no
closed points. Thus the only open sets (besides the whole set) are finite sets of the
form Yn = {P0, P1, . . . , Pn}. I claim these finite open sets are affine schemes. We
will proceed by induction. Note that the inverse image of Yn in all but the first n
Xi’s are empty (therefore the inverse image of the Yn in higher Zi,i+1’s are empty
as well), so we can essentially ignore them. Further this means that the sections we
get from them are only zero sections. A sort of minimal diagram of this situation
is the following.

Z1,2

}}{{
{{

{{
{{

!!CC
CC

CC
CC

Z2,3

}}{{
{{

{{
{{

!!CC
CC

CC
CC

Z3,4

}}{{
{{

{{
{{

!!CC
CC

CC
CC

C

X1 X2 X3
. . .

Since these sets are all finite, we can get a perhaps clearer picture of what is
going on by simply denoting them by their points.

{P1}

zzuuuuuuuuu

$$IIIIIIIII
{P2}

zzuuuuuuuuu

!!CC
CC

CC
CC

C

{P0, P1} {P1, P2} . . .

Obviously each pair of Pi’s is identified in the coproduct giving the chain of
points where each Pi+1 is in the closure of Pi. Now consider Y1 = {P0, P1}. This is
clearly a scheme because it is the spectrum of k(x2, x3, . . .)[x1] = A1. So suppose
Yi is a scheme for up to Yn. Consider Yn+1. By 2.7 we can construct Yn+1 by first
gluing together Yn and gluing on the rest. Our induction hypothesis tells us that
Yn is an affine scheme. Let us look at the setup from 2.7. The schemes X ′ = Yn

and X ′′ = Xn+1 are both affine. The Z object from 2.7 is simply Zn−1,n since all
the other possible Zi,j ’s are empty. But the map from Yn to Zn−1,n is a closed
immersion so we can apply 3.4 which tells us that Yn ∪Zn−1,n Xn+1 = Yn+1 is a
scheme. Therefore all Yn’s are schemes and since the collection of all such finite
open Yi’s covers X, X is also a scheme. Note that X has no finite affine cover. ¤

Now we will present an alternate view using valuation rings.
Let

A′ = k[x1, x2, . . .]
[
x1

x2
,
x1

x2
2

. . .

] [
x2

x3
,
x2

x2
3

. . .

]
. . .

Now the principle of proposition 2.6 suggests that the local ring at the origin will be
a local ring with no largest prime ideal among the non-maximal prime ideals. Let
A = A′(x1,x2,x3,...) (of course the ideal m = (x1, x2 . . .) contains all the monomials of
A′). A is the set of global sections of the scheme without closed points constructed
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above. Note that in A or A′ I will call finite products of the generators of A (the
xi

xn
i+1

) monomials. If n < m I will denote xn

xn+1

xn+1
xn+2

. . . xm−1
xl

m
by xn

xl
m

.
When we take the prime spectrum of A, we will get an infinite chain of points

and then a closed point (corresponding to the maximal ideal). If we remove that
closed point we get a scheme without closed points.

We are going to see that A is in fact a valuation ring with valuation to G =
Z ⊕ Z ⊕ . . . which gives it properties very much like those of a DVR and actually
makes the analysis surprisingly easy. The ordering we are going to use on G is
the lexicographic order, (n1, n2, . . .) > (n′1, n

′
2, . . .) if the first nonzero entry of

(n1 − n′1, n2 − n′2, . . .) is greater than 0. Given g ∈ G let lv(g) be the value of the
leading term of g, let li(g) be the index of the leading term of g, and let gi denote
the i’th entry of g. So for example if g = (0, 0, 4,−2, . . .) then lv(g) = 4 while
li(g) = 3 (the first two entries are zero). First we will define the valuation v on the
monomials of A (or A′). Let m be a monomial of A, and view m as an element of
Frac A, then we define v(m) to be the degree (positive or negative) of xi in m. So
for example v(x1

x1
x2
2

x2
x3

) = (2,−1,−1, 0, 0, 0, . . .). We shall now prove a number of
quick results which will allow us to conclude that A is the desired ring.

Proposition 4.3. For every g ≥ (0, 0, . . .) there exists a unique monic mono-
mial x ∈ A (or A′) such that v(x) = g.

Proof: Let l = li(g) and nl = lv(g). Note that without loss of generality we can
assume nl = 1 for if not we can find an x such that v(x) matches g except at the
leading term. That is lv(v(x)) = 1 and v(xx

lv(g)−1
l ) = g. By the same method we

can assume that gi ≤ 0 for all i > l Let t =
∑

i>l | gi |. Then let x = xl

xt
l+1

∏
i>l

x
|gi|
l+1

x
|gi|
i

and note that it satisfies the desired condition. It is unique because monomials of
Frac A satisfying that property are unique. ¤

We will now show that every element of A is a unit times a monomial but first
we need a very important lemma.

Lemma 4.4. If m1 and m2 are monomials of A and if v(m1) > v(m2) then m2

divides m1.

Proof: Let m3 be the monomial corresponding to v(m1)−v(m2), then λm2m3 = m1

for some constant λ ∈ k ¤

Proposition 4.5. Every element f ∈ A that is not a unit (so it has no constant
term) is a unit multiplied by a unique monic monomial.

Proof: Represent f as (λ1m1 + . . .+λnmn)/h where the λi ∈ K, m1 > m2 > . . . >
mn and h is an element of A′ −m. Let m′

i = mi

mn
∈ A′ ⊂ A. Thus f = (λ1m

′
1mn +

. . . λnmn)/h = mn(λ1m
′
1 + . . . λn)/h which is a monic monomial multiplied by a

unit as desired. The fact that it is unique is easy to see since it is clear that any
two distinct monomials are not associates (they do not differ by a unit). ¤

We can immediately conclude that every ideal of A is monomial. Now we have
the required machinery to actually identify the prime ideals of A and use this to
construct a scheme without closed points.

Theorem 4.6. With A as described above, Spec A − m is a scheme without
closed points.
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Proof: Suppose P ∈ Spec A and suppose P 6= m and P 6= (0). Note that xl ∈ P
for some l since if m ∈ P is any monomial then there exists l and n such that
v(xn

l ) > v(m) so that xn
l ∈ P which implies that xl ∈ P . Let l be the largest

number such that xl ∈ P . Because P 6= m such an l exists. Note that now for every
monomial m ∈ P , li(m) ≤ l, for if not we could choose l to be bigger. On the other
hand, for all monomials m ∈ A such that li(m) = l it turns out that m ∈ P . To
see this simply note that as in the proof of proposition 4.3 we can assume without
loss of generality that lv(m) = v(m)l = 1 and that v(m)i <= 0 for all i > l. Thus
we can represent m as xl

m′ where m′ is a monomial of k[x1, x2 . . .] and li(m′) > l.
Now xl

m′m
′ = xl ∈ P so that m′ ∈ P or xl

m′ ∈ P but m′ cannot be in P because if it
were it would contradict the maximality of l. Of course P automatically contains
all monomials m such that v(m) > v(xl), which includes all monomials m such that
li(m) < l. This completely identifies the monomials of P (which from this point
forward we will denote by Pl). They are the monomials m such that li(m) ≤ l and
since every ideal of A is monomial this completely determines P . At this point I
have yet to prove that the Pi actually exist (as prime ideals), but if you look at
A/Pi this is A without the first i variables of A (and all their quotients). It is easy
to see that this leaves you with a ring isomorphic to A. Now note that Pi contains
Pj for all i > j, thus the set of prime ideals of A is the set {(0), P1, P2, . . . m} and
we also have (0) ⊂ P1 ⊂ P2 ⊂ . . . ⊂ m. Therefore Spec A− m is a scheme without
closed points. ¤

Finally we should note that Spec A − m is the same scheme as the one con-
structed in 4.2. This is easy to see since the universal property 2.3 guarantees a
map from the scheme constructed in 4.2 and it is not to difficult to see that this
induces an isomorphism on the finite open (affine) subsets.

We should also mention some results of M. Hochster in [5]. There he defines a
space to be spectral if it is T0, quasi-compact, the quasi-compact open subsets are
closed under finite intersection, form an open basis, and every nonempty irreducible
closed subset has a generic point. He calls a space semispectral if finite intersections
of quasi-compact open subsets are quasi-compact. He then proves that a topological
space is the underlying space of a scheme if and only if X is locally spectral and
semispectral. It was pointed out to me that it is fairly easy to construct a topological
space without closed points satisfying these conditions. For example, the underlying
space of the scheme we construct in 4.2 and 4.6 is locally spectral (by the finite
open sets) and semispectral.
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