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A CHARACTERIZATION OF FINITELY GENERATED MODULES

Part 1: Introduction

The purpose of this thesis is to characterize finitely generated modules. A standard result in
undergraduate abstract algebra is that every finite Abelian group is isomorphic to a unique direct
product of cyclic groups of prime power order. A similar statement can be made about finitely
generated groups, except in this case there are also infinite cyclic summands. This result can be
generalized further to R-modules where R is a Euclidean domain. This is the main result of this
thesis. There are also some other statements about other more generalized domains as well. This

thesis will conclude with an application to F[z] modules.

Let us define an Abelian group and a ring as normally done (Gallian 41, 225). We will call the

identity element 0. Let us define an R-module as follows:

DEFINITION 1.1 An R-module is an Abelian group under addition, with scalar mul-
tiplication from a commutative unitary ring R, and for any a,b € A and r,s € R we have that
r(a+b) =ra+rd, (r+s)a=ra+sa, (rs)a=r(sa), and la=a. m

Notice that this also implies that 0a = 0 since 0 + 0a = 0a = (0 + 0)a = 0a + Oa, so by
cancellation, 0 = Oa, and similarly this implies that for any » € R, 70 = 0. We will be looking in
particular at what happens when the ring is a Euclidean Domain. A Euclidean domain (Gallian
317) D is an integral domain where there is a function d from the nonzero elements of D to the

non-negative integers such that for all non-zero a,b € D, d(a) < d(ab), and for all a,b € D where b



is non-zero, there exist elements ¢ and r in D such that a = bg + r, where r = 0 or d(r) < d(b). Z
is a Euclidean domain with d(z) = |z| and so is F[z] where F is a field and d(f(z)) = deg(f(x)). A
Euclidean domain is a principal ideal domain and also thus a unique factorization domain (Gallian
319).

DEFINITION 1.2  We call a non-empty subset of an R-module M a submodule if it is a
subgroup under addition and also is closed under multiplication from the ring R. m

Notice that we can think of Abelian groups as Z-modules. That is to say for any a € A, and
some integer m, ma just means a + a + - - - + a, m times, with Oa being the identity element in A. Tt
is clear that multiplication from the integers is distributive if and only if A is Abelian. For suppose
multiplication is distributive, then (a 4+ b) + (a +b) = 2(a + b) = 2a + 2b so b+ a = a + b. For the
converse suppose that our group is Abelian, then n(a +b) = (a+b) + --- + (a + b) = na + nb.

DEFINITION 1.3 Let M be an R-module and let ay,as,...,a; be elements of M. We
will define (a1, ...,ar) = Span{ai,...,ar} = {0+ ria1 + -+ + rraglrs,..., 7, € R}. m

Note that Span(@) = {0}.

THEOREM 1.1 (ay,...,ax) is a submodule of M. Proof: Suppose R is a ring, that M
is an R module, and that {ai,...,ax} are elements of M. Now {ai,...,a) is non-empty since

O+lay+---+1lay =a1+---+ag € {a1,---,ax). Then take any a,b € {ay,...,ax), by the definition

of {(ay,...,ar) we know that a = ria; + -+ + rpax and b = syay + -+ + spag, where r; and s;
are ring elements, for ¢ = 1,...,k. Then a — b = (r; — s1)a; + -+ + (rp — sg)ar € A and also
r(a) = (rr1)a; + -+ (rr)ag € {a1,...,ax). Thus {a,...,ax) is a submodule of M. m

DEFINITION 1.4 We call an R-module, M, finitely generated if M has a finite subset
{ai1,...,ar} such that (a1,...,ar) =M. m

In this case we say that {a1,...,ar} generates, spans, or is a spanning set for M. We say that
M is cyclic if there exists a single element a € M such that (a) = M. Notice that if we consider a
unitary ring as a module over itself, the module is finitely generated, and even cyclic since (1) = R.
If we consider R@® R as a R module it too is finitely generated with a generating set {(1,0), (0,1)}.
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Furthermore, if we let R be a module over itself, the submodules of R are exactly the ideals of R,
since the ideals are the subgroups of R that are closed under multiplication by all elements of R.

We can also consider some examples finitely generated groups and modules.

Example 1.1  Any finite module is finitely generated. Simply take the generating set to be
everything in the module.

Example 1.2  Any cyclic module (and also cyclic group) is finitely generated with the gen-
erator of the cyclic module being the spanning set for the module.

Example 1.3  The rational numbers are not a finitely generated Z-module under the opera-
tion +; in other words they are not a finitely generated group. Assume that the set {p1/q1,-..,pr/qr}
is a generating set for Q. Let ¢ be the least common multiple of the denominators of our generating
set, that is let ¢ = lem(q, - - ., qx). Of course ¢ must be nonzero. Notice that any linear combina-
tion of the elements in the generating set, say z/y, will have a denominator that divides ¢ as long
as ¢ and y are relatively prime. But this is not a problem since every non-zero rational can be
written in that form. Then, consider the rational number 1/(g + 1). Since g + 1 does not divide g,
1/(g+1) ¢ (p1/aq1,---,pr/qr) and therefore, the rational numbers are not finitely generated.

We can define a homomorphism between two R-modules as follows.

DEFINITION 1.5 Let M be a module over a ring R and let K be a module over R also,
then we call a mapping ¢: M — K a homomorphism if for any m and n in M and for any r in R,
¢(m +n) = ¢(m) + ¢(n) and ¢(rm) =r¢(m). m

Notice that when R is a unitary ring, ¢ is a homomorphism if and only if ¢(rm + rn) =
r¢(m) +ré(n).

DEFINITION 1.6 We call a bijective homomorphism an isomorphism. m

THEOREM 1.2 A homomorphism whose domain is a finitely generated module is com-
pletely determined by its behavior on the generating set. Proof: Suppose that we have a ho-
momorphism ¢ between two R-modules M and N, where M is finitely generated with generating
set {ai,...,ar}. Then take any a € M so a = ria1 + - -+ + ryay for some r1,...,7, € R, thus

3



#la) = ¢(riar + -+ + rpar) = m1¢(a1) + -+ + red(ak). So, for any a € M, ¢(a) is completely
determined by the image of the generating set. m

Many of the familiar properties of homomorphisms hold. For example,

THEOREM 1.3  Suppose that ¢ is an R-module homomorphism between the two R-modules
M and K, and that L is a submodule of K. Further suppose that v is a R-module homomorphism
between K and N.

(a) &(M) is a submodule of K Proof: For any ¢(m),p(n) € (M), we have that ¢(m) —
d(n) = ¢(m —n) € ¢(M), and also for any r € R, r¢(m) = ¢(rm) € ¢(M). Therefore ¢(M) is
closed under multiplication from R. m

(b) ¢~(L) is a submodule of M Proof: The fact that ¢~1(L) is non-empty and closed under
group operations falls immediately from the fact that ¢—!(L) is a subgroup of M. Now consider
multiplication from the ring R. Let m € ¢~(L) and r € R. Then by the definition of ¢~1, ¢(m) € L,
so then r¢(m) € L since L is a submodule of another R module. Thus ¢(rm) € L and rm € ¢~ 1(L)
which completes the proof. m

(¢) The composition of two homomorphism is a homomorphism. Proof: We will show that
¢ composed with ¢ is an R-module homomorphism between M and N. For take any r € R and
z,y € M, then ¢((r(z +y)) = o(ri(z) + ro(y)) = ré(b(z)) + r(¢(y(z)). m

(d) The inverse function of an isomorphism is a isomorphism. Proof: This is easy to
see for suppose ¢ is an isomorphism between two R-modules, M and K, then ¢! is a bijection
between K and M. To prove that it is an additive homomorphism consider ¢~ !(z + y) where
2,y € N. Notice that ¢(¢~ (z +y)) =2z +y = ¢(¢~'(2)) + d(¢7'(y)) = $(¢~ " () + ¢~ (y)). Thus
¢ 1z +y) = ¢ (zx)+ ¢! since ¢ is one-to-one. Now to prove that ¢! (rz) = r¢!(z). Note that
#(p (rz)) = rz = rg(¢ 1(z)) = ¢p(r¢ 1(z)). So again ¢ '(rz) = r¢ '(z) which proves that the
inverse function of an isomorphism is an isomorphism. =

(e) The kernel of a homomorphism is a submodule. Proof: This is easy since clearly {0} is a
submodule of K. Notice that Ker¢ = ¢~1({0}) so then since ¢=1({0}) is a submodule of M, we
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are done. m

We will now present some familiar results about modules and submodules. In particular we are
interested in factor modules.

THEOREM 1.4 M/N forms an R-module. Proof: Let M be an R-module and let N be
any submodule. Let us define the set M/N = {m + N|jm € M}. We claim that M/N is also an
R-module where (m; + N) + (ma2 + N) = (mq + ma + N) and r7(mq + N) = rm; + N. Since the
group is Abelian, N is normal and the first operation is well defined and forms a group (Gallian
173). Now consider the second operation. We want to prove that multiplication from the ring
is well defined. Suppose that my + N = my + N, thus m; = ms + n for some n € N. Then
rm1 = rma + n' for some n' € N since N is closed under multiplication from the ring. Thus
rmy —rms = n' € N and therefore rm; + N = rmo + N. The rest of the properties follow
directly from the fact that M is an R-module, because for any a,b € M and r,s € R we have that
r((a+N)+(b+N)) =r(a+b+N) =ra+rb+N = (ra+N)+(rb+N) = r(a+ N)+r(b+N), and that
(r+s)(a+N)=(r+s)a+N = (ra+N)+(sa+ N), and also that (rs)(a+N) = rsa+N = r(sa+N)
and finally, 1(a+ N) =la+ N =a+ N. So M/N is itself an R-module. m

THEOREM 1.5 If M and N are modules over a ring R and ¢ is any surjective homomor-
phism from M onto N then if M is finitely generated, so is N. Proof: Let R be a ring and let M and
N be R-modules, and also suppose that M is finitely generated with a generating set {a1,...,ax}.
We will show that the set {¢(a1),...,d(ar)} generates N. For take any n € N, since ¢ is surjective,
there exists m € M such that ¢(m) = n. However, since M is finitely generated, m = ria; +- - -+rgag
for some elements rq,...,7, € R. Thusn = ¢(m) = ¢(r1a1)+-- -+ d(rrar) = rid(ar)+---+red(ar)
which completes the proof. Therefore {(¢(a1),...,d(ar)) = N. n

This also shows the useful result that if A is a finitely generated module over a ring R, and B is
any submodule of A, then the factor module A/B is finitely generated. The appropriate surjective
homomorphism is ¢(a) = a + B.

We will now expand a familiar and very useful theorem to modules, what often called the first
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isomorphism theorem.

THEOREM 1.5 Let M and N be modules over a ring R and let ¢ be any homomorphism
from M to N. Then M/Ker¢ is isomorphic to ¢(M). Proof: The obvious mapping, 1, where
(m + Kerd) = ¢(m) actually turns out to be the correct one. The fact that 1) is well defined and
that it is an isomorphism at least up to the operation of + is proved in exactly the same way as is
done for groups so it will be omitted (Gallian 199). To show that 1 (rz) = ri(z), notice that for
any m + Ker¢ € M/Ker¢, we have that ¢ (r(m + Ker¢)) = ¢(rm + Ker¢g) = ¢(rm) = ré¢(m) =
r(¢(m + Kerg)). This completes the proof. m

In the next section we will examine some properties of finitely generated modules.



Part 2: Submodules of Finitely Generated Modules

In this section we will prove the important theorem that every submodule of a finitely generated
R-module is finitely generated, so long as R is a principal ideal domain. We will also explore the
nature of a generating set; for example, whether it is linearly dependent. What follows is a sufficient

condition for a module to be finitely generated.

THEOREM 2.1 Let A be a module and let B be a submodule of A. If both B and A/B
are finitely generated then A is finitely generated. Proof: Since B and A/B are finitely generated
modules, they both have generating sets, say {b1,...,b;} and {a1 + B,...,a; + B}. We want to
show that {a1,...,a;,b1,...,b;} is a generating set for A. Clearly, {(a1,...,a;,b1,...,b;) C A. Take
any a € A, then because A/B is finitely generated, there exist ring elements rq,...,r; such that
a+B =ri(a1+B)+---+r;(a; +B) = (ria1+---+rja;) +B. Clearly a € a+ B, so there exists some
b € B such that a = ria1 +---+r;a; +b. B however, is finitely generated also, so b = s1b1 +- - -+ ;b;
for some s1,...,s; € R. Then a =ria; +---+rja; +s1by +--- + sib; € (a1,...,a;,b1,...,b;). m

Just as done in linear algebra we can discuss linearly dependent and linearly independent subsets

of modules.

DEFINITION 2.1  We call a finite subset of a module M, such as {ai,...,ax}, linearly
dependent if there exist ring elements 1, ..., 7, not all zero, such that ryay + - - - + rrar = 0, where
0 is the identity element of A. We call a subset of a module linearly independent if it is not linearly
dependent. As in linear algebra we call a subset of a module M a basis for M if the subset generates
A and if the subset is linearly independent. m

Below are some results regarding bases.

THEOREM 2.2 A generating set {ay,...,a;} for an R-module M is linearly independent if
and only if every element in M can be represented as a unique linear combination of the elements in
the generating set. Proof: First let us assume that the generating set is linearly independent. Then

assume that for some a € A,a = r1a1+---+rrar and a = sya,+- - -+8gar wherery,..., 7k, 81,...,85k
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are elements of R. Then 0 = a—a = (r; — s1)ay + - -- + (1x — sk)ax, but since our generating set is
linearly independent, r; —s; =0sor; = s; for all i = 1,..., k. To prove the converse assume that
{a1,...,ar} is linearly dependent. Then there exists elements of the ring rq,...,7, not all zero,
such that ryay + - - -+ rgag = 0ay + Oaz + - - - + Oag. Thus 0 has two distinct representations. m

Next we have an interesting lemma that proves many simple results for R-modules where R is
an integral domain.

THEOREM 2.3 If R is an integral domain and M is an R-module with a generating set
{a1,...,ar}, and if B = {b1,...,b;} is any subset of M where | > k, then B is a linearly dependent
set. Proof: Notice that b; € M for all i« = 1,...,l. Thus we have elements n,, € R, where
z=1,...,land y = 1,...,k such that

b1 =ni1a1 + -+ - + nikag
by = no1a1 + -+ - + nogag

é).l. =mnpay + -+ Ngag
Notice, that we want to show that there exist ring elements m; to m;, not all zero, such that
m1by + - - + myb; = 0, which would prove that {by,..., b} is linearly dependent. Now consider the
following system of equations.
minyy + - +myng =0
;;;1"116 4+ +myng =0
If this system of equations has a non-trivial solution in R, then those values of m; to m; also
make myby; + --- +myb; = 0. Let F be the field of quotients for R (Gallian 273). Then there are
elements myq,...,m; € F not all zero that solve the system since [ > k because we can reduce this
system over F', or in other words the number of columns is greater than the number of rows in the
corresponding augmented matrix. But we can multiply through by the product of the denominators
of the m;’s (over 1) to get solutions that are in R. Therefore the set {b1, ..., b} is linearly dependent.
]
There are two important immediate corollaries to this lemma. The first is that for any integral
domain R, every basis of any R-module has the same size, since if one basis were smaller, then the
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larger basis would be linearly dependent. The second is that a basis is a smallest possible generating
set for a module. It should be noted that a linearly independent set of maximal size is not necessarily
a generating set. For example, in the finitely generated Z-module (and also Abelian group) Z, {2}
is a linearly independent set of maximal size in Z but it does not generate Z. Also a minimal
generating set is not always a basis, for example, {(1,0),(0,1)} is a minimal generating set for the

Abelian group Z @ Z3, although it is not linearly independent since 3(0,1) = (0,0) = 0.

Let M be a finitely generated R module with a generating set of size k. There is a natural
surjective homomorphism from the R-module R* = R® R @ --- ® R onto M. Suppose that M’s
generating set is {a1,...,ar}. The function we want takes (r,...,r,) to rias + --- + rrag. Notice
that if our generating set is linearly independent, and thus a basis, this mapping is one-to-one and

thus an isomorphism.

We will now prove that for a principal ideal domain R (Gallian 286), every submodule of a
finitely generated R-module is finitely generated. First, however, we will prove the following lemma,

that every submodule of R* is finitely generated by a set of size k.

THEOREM 2.4 When R is a principal ideal domain, every submodule of the R module
RF is finitely generated and has a generating set of size k. Proof: We will use induction on k.
For the base case of £k = 1, we are looking at the submodules of R over R itself, which as we
already noted are the ideals of R. Since R is a principal ideal domain every ideal and thus every
submodule is of the form (r), where r is just an element of R, and thus every submodule of R
has a finite generating set. Now let us assume that for some integer k, every submodule of R is
finitely generated. Consider the homomorphism ¢ onto the first k-summands from R*t! to R, in
other words the mapping ¢(myq, ..., Mg, Mgs1) = (M1,...,mg). The kernel of this homomorphism
is clearly the subgroup {(mi,...,mg, mgr1) € R m; = 0,i = 1,...,k} which is isomorphic to
R, and thus finitely generated (with a single generator). Now let H be any submodule of R*¥+!.
Then ¢(H) is a submodule of R*, and thus by the induction hypothesis finitely generated with a
generating set of size k. Let K be the kernel of that mapping from H to ¢(H), so K is isomorphic
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to a submodule of R and is generated by a single element, since R is a principal ideal domain.
By the first isomorphism theorem for modules, ¢(H) is isomorphic to H/K. Thus H/K is finitely
generated with a generating set of size k. Therefore by theorem 2.1, since both K and H/K are
finitely generated, H is a finitely generated R-module with a generating set of size k + 1, (of course
it might have a smaller generating set). m

This result and the next one can easily and obviously be extended to the case when we have
a ring R with the property that every ideal is finitely generated. However, since what we will be
dealing with in the next section are Euclidean domains which are principal ideal domains, looking
at this restricted case is sufficient. In the general case where every ideal of R is finitely generated,
some submodule of R* might have a minimum generating set of size larger than k. Just as a side
note, this property that every ideal is finitely generated is equivalent to the condition that every
strictly increasing chain of ideals is finite in length (Gallian 322), or in other words that R is a
Noetherian domain. We will now prove the main result of this section, that every submodule of a
finitely generated R-module is finitely generated, so long as R is a principal ideal domain.

THEOREM 2.5 Let R be a principal ideal domain, then every submodule of a finitely
R-module is finitely generated. Proof: Let M be a finitely generated R-module and let N be any
submodule of M. Now M has a finite generating set say S = {ay,az,...,ar}. Consider the natural
surjective homomorphism, ¢: R* — M defined by ¢(r1,...,7k) = T101 + 7202 + - - - +rrar. We know
that ¢ 1(N) = {z € R¥|¢(z) € N} is a submodule of R*. Therefore by theorem 2.4, ¢~ 1(N) is
finitely generated. Now since ¢ is a surjective homomorphism onto N when its domain is restricted
to ¢~1(N), by 1.5, N is finitely generated. m

We now have a nice biconditional statement about finitely generated modules and their sub-
modules.

THEOREM 2.6 If Ris a principal ideal domain, M is an R-module and N is any submodule
of M, then M is finitely generated if and only if N is finitely generated and M /N is finitely generated.

Proof: This of course follows immediately from theorems 1.5, 2.1 and 2.5. m
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Part 3: A Factorization of Finitely Generated Modules

We will now prove our major result which is that every finitely generated R-module, where R
is a Euclidean Domain, is isomorphic to the direct product of R-modules of the form R/(a), where
a is an element of R. But first, we need a few more theorems. Let us consider any homomorphism

¢: R™ — R™. We will show that ¢ is a matrix transformation.

THEOREM 3.1 Let M be an n X m matrix over a ring R. Then there is a homomorphism
¢: R™ — R"™ such that ¢(z) = Mz. Proof: Consider the n X m matrix M, and the mapping
¢:R™ — R", where ¢(x) = Mz. Let  and y be in R™ and let r be in R, so we have ¢(z +y) =
Mz +y) = Mz + My = ¢(z) + ¢(y) and ¢(rz) = M(rz) = (Mr)z = rMz = r¢(z). Thus ¢ is a
homomorphism. Therefore for every n x m matrix M with elements in R there is a homomorphism
¢: R™ — R™ such that ¢(z) = Mz. m

Now we will prove the converse of the above statement.

THEOREM 3.2 Let R be a commutative ring. Then every homomorphism between the
R-modules R™ and R™ is a matrix transformation. Proof: Let ¢: R™ — R"™ be a homomorphism.
Without loss of generality we can think of the elements of R™ as column vectors. Let us define e; as
the ¢’th column on the m x m identity matrix. Notice that ¢ is completely determined by how the
different e;’s are mapped, since any homomorphism is completely determined by its behavior on the
generating set. If we define the n x m matrix M so that i’th column is just ¢(e;), then ¢(z) = M.

Thus every homomorphism ¢: R™ — R"™ is a matrix transformation. m

We have just established a correspondence between matrices and homomorphisms which will be
vital in our proof shortly. But first there are a couple of interesting and probably expected points
which can be made about the nature of the matrix M and its related homomorphism. If the columns
of M are linearly independent, then the homomorphism is an injection. This is easy to see since
only the zero vector is mapped to zero or in other words |Ker(¢)| = 1. Also, if the columns of M
span R™ then our homomorphism is a surjection. For take any x € R™ then, since the columns of
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M are a spanning set, we can write = rqvy + - - - + 7, V,,, where r; through r,, are elements of R

and v; through v,, are the columns of M. Thus ¢((r1,...,7m)) = .

We will now prove that if R is a Euclidean domain, (and thus a principal ideal domain and also
a unique factorization domain (Gallian 319)), then every finitely generated R-module is isomorphic
to an R-module of the form R/{a;) & ---® R/({ax), the direct product of cyclic R-modules. First we

will present a small lemma.

Lemma: If R is a Euclidean domain, and if 7 € R and r is a unit, then d(r) < d(z) for
all non-zero z € R. This is easy to prove; just note that by the definition of Euclidean domain
d(r) < d(rr=1') = d(1) < d(1z) = d(z). Also it is easy to see that if d(z) = d(1), then z is a unit.
By the definition of a Euclidean Domain there exist elements ¢ and r in R such that 1 = gz +r
where r = 0 or d(r) < d(z). But d(r) < d(z) is a contradiction since d(x) = d(1) and 1 is a unit.
Thus 1 = gz + 0 = gz and x is a unit. =

THEOREM 3.3 If R is a Euclidean domain, then every finitely generated R-module is
isomorphic to an R module of the form R/{(a1) & --- ® R/{ax) where a1, ...,ar € R. Proof: Let R
be a Euclidean domain and let M be a finitely generated R-module with a generating set {a1, ..., ax}.
Consider the natural surjective homomorphism, ¢: R¥ — M where ¢(z1,...,2;) = 101 +- - -+ 204
Let us call the kernel of this homomorphism K. Since K is a submodule of R* we know that it is
finitely generated, and has a generating set of size k, say {b1,...,bg}. Consider the homomorphism
¢: R¥F — K where ¥((z1,...,7) = 21b1 + - - - + zbg. But then ¢ is just a matrix transformation
¥ (v) = Cv where the columns of the matrix C' are the elements of the generating set {by,...,br}. So
for every finitely generated module there is a k¥ x k matrix C' and its corresponding homomorphism
1 such that M is isomorphic to R¥/¢)(R¥) by the first isomorphism theorem.

Now consider what happens if C' is a diagonal matrix with entries ¢y, ..., ¢ along the diagonal.
Then K = (c1) ® (c2) ® - - - ® {c). Notice that if ¢; = 0, then (¢;) = {0} and if {¢;) is a unit, then
{c;) = R. Now look at the quotient module R¥/({c;) @ --- @ (c)). This module is isomorphic to the
R-module R/{c1) ® R/{c2) ® --- ® R/{cx) with the obvious mapping. Notice that R/(0) is just R
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and R/(u) is isomorphic to {0} whenever u is a unit. We can essentially throw away or forget about
the the factors of the form R/(u), as they add nothing to the module.

We will now look at what happens if C' is not a diagonal matrix. We will show how to reduce
C to C', and that R/K is isomorphic to R/K', where K' is the image of the homomorphism
corresponding to the reduced matrix C’. We will first show that the following row and column
operations on C' (which of course could change the homomorphism %) do not change the module
R/K up to isomorphism. We will use ideas of elementary matrices to prove some of these results.

a.) Column Replacement: This is adding a scalar multiple of one column to another. Clearly
this does not change the module K = 9 (R*). Since K has a generating set {b1,...,b;} and the
matrix C' consists of merely the elements of that set as columns, adding some scalar multiple of
column 4 to column j is really just changing the generating set to {b1,...,bs...,7b; +bj,...,bg}
for some ring element r, but of course that really changes nothing since b; is still generated by the
new generating set, namely by adding —rb; to rb; + b;.

b.) Column Scaling (by a unit in R): This is multiplying a column in C' by a unit 7 which is
equivalent to transforming the generating set of K from {b1,...,b;,...,br} to {b1,...,7bi,...,br}
which of course both generate the same thing since r=1(rb;) = b;.

c.) Column Interchange: This is just switching two columns in the matrix M. In terms of our
basis {b1,...,b;,...,bj,...,br}, we are just switching b; and b;, which of course does not change K.

We will handle all these three row operations at once in the next paragraph.

d.) Row Replacement

e.) Row Scaling (by a unit in R)

f.) Row Interchange

Row operations are a bit more complicated; they change every element in the basis, and can
change what elements are actually in K. However, what we will show is that RF/yc(RF) is iso-
morphic to R¥ /¢ pc(R?), where E is the elementary matrix corresponding to the appropriate row
operation that was performed on C. Consider the mapping between these two modules defined by
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0(z) = Ex. Since E is an elementary matrix it is easy to see it has an inverse. If E was created by
performing a row replacement on the identity matrix, we can create E~! by performing the same
row replacement but by using the negative of the original scalar. If E was created by scaling a row
by r then E~! is created by scaling the same row by r—1. If E was made by switching two of the
columns of the identity matrix, then E = E~1. Now consider §(K), since E is a matrix, 0 is a
homomorphism, and in fact, since E has an inverse, # has an inverse function §~!(z) = E~'z. Thus
# must be an injection, but it is also a surjection onto R* since the columns of the identity matrix I
span R*. and so do the columns of an elementary matrix FE, since one column operation can change
I to any E. Therefore §(K) is isomorphic to K. Thus the three row operations on M take K to an
isomorphic R-module, K'.

Now we need to show that R¥/K is isomorphic to R¥/K' after performing a row operation
(remember column operations change nothing). The mapping that takes z+ K to 8(x)+K' = Ex+K'
works. We must show that the mapping is well defined. Suppose that t+ K = y+ K. Thenz—y =k
for some k € K, now Ex — Ey = Ek € (K) = K'. It is a homomorphism since it is a matrix
transformation, it is an injection since E has an inverse, and it is a surjection since 6 is a surjection
onto R*¥. Now we know that performing a finite number of row and column operations on C' does
not change R¥/K up to isomorphism.

We will show that given a k x k matrix C, we can reduce C, using the above operations, to a
diagonal matrix, and thus not alter the corresponding module, at least up to isomorphism.

The Algorithm for Reducing our Matrix:

1. Take m; ; to be any non-zero element, (if there is no such element the matrix is diagonal) of
the n x n matrix C' where d(m; ;) < d(c) for any non-zero entry ¢ in our matrix C. That is m; ; is
smallest entry of the matrix up to the function d.

If m; ; divides every element in its row and column, then use column replacement and row
replacement to make that row and column zero (except for m; ;). We have effectively reduced the
dimension of the matrix by 1 row and 1 column. Go to step 1 with our new n — 1 x n — 1 matrix,
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unless our matrix has only one element, in that case proceed to step 2.

Otherwise m; ; doesn’t divide some element of its row or column, say it doesn’t divide my, then
by the division algorithm for a Euclidean Domain, there exists non-zero elements r and p such that
my = pmy; ; + r, where d(r) < d(m;, ;). Then add —p times the row (column) containing m; ; to the
row (column) containing m;. Then the entry at m; becomes r. The smallest element (up to the
function d) is now at least no bigger than r, and we can restart step 1.

This first process cannot continue indefinitely since the matrix has finite dimension and since
at each step in the second case d(r) gets smaller, so eventually d(r) = d(1) (in which case r would
be a unit and it would divide everything in its row and column).

In many ways this procedure is similar to the Euclidean Algorithm, except that we are not
necessarily performing operations on two elements.

2. We now have some permutation of a diagonal matrix. Use column interchange to construct
a diagonal matrix.

This proves that when R is a Euclidean domain, every finitely generated R-module can be
expressed as the direct product of cyclic R-modules, which also proves that every finitely generated
group can be expressed as the direct product of cyclic groups. m

Example 3.1 We will now show this theorem in use on a finitely generated Abelian group

2 -1 4
(a Z-module). Let the generating set for K be 3 0 -2 so or matrix is A =
1 4 -3
2 -1 4
3 0 —2].If we use d(z) = |z|, the smallest element of the matrix, up to d, is (—1) on row
1 4 -3
one column two, (the 1 on row three column one would work also). —1 divides everything in its row
2 -1 4
and column since it is a unit, thus we have A= [ 3 0 —2 | after performing the appropriate
9 0 13
row replacement on row three. Making the rest of row one zero is achieved by performing two column
0 -1 0
replacement operations so A = | 3 0 —2 |. Now effectively we can forget about row one and
9 0 13

column two of the matrix, leaving us with A’ = (g _:? > . But for the sake of visual simplicity let

us leave that row and column in, although we won’t consider them for any operations. Thus the new
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smallest element of A is (—2) on row two column three. We can then use column replacement on

0 -1 0
column one to get thenew A= | 1 0 —2 |, and then perform column replacement back on
22 0 13
0 -1 0
column threetoget A= 1 0 0 |, and then performing row replacement again to get A =
22 0 57
0 -1 0 1 0 0
1 0 0 |.We now only have to use column interchange and we have A = | 0 —1 0
0 0 57 0 0 57

Thus our finitely generated group is isomorphic to Z /{1) & Z/{—1) & Z /{57) which is just Zs7.
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Part 4: The Factorization of Finitely Generated Modules is Unique

Now that we have shown that we can factor any R-module into a direct product of cyclic R-
modules, we will show that this factorization is unique when written in a certain form. We will show
that every finitely generated R-module, where R is an Euclidean domain, can be written uniquely
(not counting the order in which they are written) as a direct product of R’s, and of R-modules of
the form R/{a*) where a is irreducible. First we will show that the number of factors of the form R

is unique.

THEOREM 4.1 In the above factorization, the number of factors of the form R/{0} = R is
unique. Proof: Suppose R is a Euclidean domain and that M is a finitely generated R-module, then
by theorem 3.3, M is isomorphic to R* ® R/(a1) ®-- - & R/({as), where a; is non-zero, non-unit. Also
suppose that M is isomorphic to R' @ R/(b1) @ - -® R/(bs) where b; is non-zero, non-unit. Therefore
RF@&R/(a1)®---®R/{as) is isomorphic to R'@R/(b,)@®---dR/(bs). Now since R is also an integral
domain, R* ® R/{a;) @ --- ® R/(a;) has a linearly independent subset of size k, namely the first k
columns (or rows) of the k + ¢ identity matrix, ey,...,ex. This set is linearly independent since R
has no zero divisors. What we will now show is that any larger subset is not linearly independent.
Suppose that vy,...,vgq1 is a linearly independent subset of R* @ R/{(a1) @ --- ® R/{a;), then
let a = ajas---a¢, and consider the set avi,...,avi41. Clearly this set must also be linearly
independent, but it also must be a subset of the module generated by ey,...,ex, since the last ¢
summands must all be zero. Therefore, by theorem 2.3, v1,...,vg41 is linearly dependent, which
is a contradiction, Thus, the largest linearly dependent subset of R* ® R/{a;) @ --- ® R/{a;) has
size k. Similarly, R' ® R/(b1) & --- ® R/(bs) has a linearly independent subset of size I, and every
larger subset is linearly dependent. Since the two modules are isomorphic, it is easy to see that
RF®R/{a1)®- - -®R/{a;) has a linearly independent subset of size [ and that RI@R/{b1)®- - -®R/(bs)

has a linearly independent subset of size k. Thus k =1. =

We will also prove that when RF®R/(a1)®- - -®R/{a;) is isomorphic to RFOR/(b1)®- - -®R/{bs),
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that R/{a1) @ --- ® R/{a;) is isomorphic to R/{(b1) & --- & R/{bs)

THEOREM 4.2 If R is an Euclidean domain and the R-module, M = R¥® R/{a1)®--- &
R/(a;) is isomorphic to N = RF@ R/(b1) © ---® R/(bs) then R/{a1) ®---® R/{a;) is isomorphic to
R/{(b1) ® --- ® R/(bs). Proof: Since the two are isomorphic there exists an isomorphism between
them, let us call it ¢. Now consider G = {(z1,%2,...,Zp4t € M|z = --- = z, = 0}, notice
that G is a submodule of M. And consider what happens when you restrict ¢ to G. We will
call this mapping that takes G to ¥(G), ¢. Notice that ¢ is still an injection. We will show that
#(G) =H ={(y1,Y2,-- -, Yk+s € N|y1 = --- = yr = 0}. It is easy to see that ¢(G) is contained in
H, for suppose that for some z € G, we have that ¢(x) = (I1,..., L, .,k Ykt1, - - - Ykts), Where
l; is not equal to zero. Then let @ = aias---a, so 0 = ¢(0) = ¢(ax) = ag(z) = (aly,...,al;,...)
which is not equal to zero since al; is not equal to zero because R is an integral domain. But we
can also show that ¢ maps G onto H. First, let us define b = by b, - - -b,. Now if we take any y € H,
then there exists € M such that ¢(z) = y. Now suppose that z ¢ G, then some entry of z, say z;,
is not equal to 0, where 1 < ¢ < k. Thus bz is not equal to 0. So ¥ (bx) = byp(x) = by = 0 = ¢(0),
which is a contradiction since v is one-to-one. Thus the mapping ¢: G — H is an isomorphism,
which completes the proof. m

Now we will prove that any R-module of the form R/(a) is isomorphic to an R-module of the
form R/{a1P') & --- & R/{axP*), where a; is an irreducible element of R. First we will prove two
small lemmas.

Lemma 1: Let R be a principal ideal domain and let z,y € R. Suppose z and y have no
common non-trivial factors; we will prove that there exist s and ¢ in R such that sz + ty = 1.
Consider (z) and (y); since R is a principal ideal domain, we know that (a) = (z,y) = (z) + (y).
Then, since z,y € (z,y), we have that x = ma and y = na for some m,n € R, so a is a factor of
both z and y, thus a is a unit. Therefore (z,y) = R, and since 1 € R, there exist s,¢ € R such that
sc+ty=1.m

This next lemma is reminiscent of the Chinese Remainder Theorem.
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Lemma 2: Let R be a principal ideal domain and let a1, as be non-zero non-unit elements
of R and also suppose that a; and as have no common non-trivial factors. We will prove that for
any a,b € R, there exists x € R such that z + (a1) = a + (a1) and z + (az) = b + (az). By the
previous lemma, there exists s,, sp, tq,tp € R such that s,ay + t,a2 = a and spay + tyas = b. Then

let © = spa; + tgaz. Clearly this is a solution to the system. m

THEOREM 4.3 If R is a Euclidean domain, then any R-module of the form R/{(a), where
a is a non-zero non-unit element of R, is isomorphic to R/{a1) ® R/{a2) where a = ajaz and a;
and as have no common factors. Proof: Let R be a Euclidean domain and let us consider the
homomorphism ¢: R — R/{(a1) ® R/{a2), where a; and a, are non-zero non-unit elements that
have no common factors and ¢(z) = (z + {a1),z + {az)). Clearly this mapping satisfies all the
homomorphism properties. We need to prove that ¢ is surjective. If take any (a + {(a1),b + {as)) €
R/{(a1) ® R/{as), by the second lemma there exists z € R such that z + (a;) = a + (a1) and
z + {az2) = b+ (az2), thus ¢(z) = (a + (a1),b + (a2)). We are going to use the first isomorphism
theorem. Let aias = a. We need to prove that Ker¢ = (a). Suppose that ¢(z) = (0+{a1),0+ (az2)).
Then z is in {a;) and thus a multiple of a;. Similarly z is a multiple of as. Since R is a unique
factorization domain and since a; and az have no common factors, a|z, Ker¢ is contained in (a).
Now take z € (a), thus £ = ya = yajas. Then ¢(x) = (yazay + {a1),yaias + (a2)) = 0. Thus by the
first isomorphism theorem for modules, R/(a1) ® R/{az) is isomorphic to R/{a). m

We can now change the factorization that we found in theorem 3.3 into a factorization of the
form R/p1™ @ --- @ R/pr™* where p; is irreducible, and m; > 0. We will now show that for
any finitely generated module there is only one factorization of this form up to isomorphism and
reordering the factors.

THEOREM 4.4 If R is a commutative unitary ring and M is an R-module and M is
isomorphic to Hy; @ --- & Hy, where H; through Hj are also R-modules, then the submodule of M,
rM = {rz|z € G} (pis an element of R) is isomorphic to rH; ®- - -®rHy. Proof: First we must show
that r M is really a submodule of M ; clearly it is non-empty since 70 = 0. Then take any ra,rb € rM.
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Thus ra —rb = r(a — b) € rM, and for any s € R, sra = r(sa) € M. Thus rM is a submodule of
M. Now to actually prove the lemma. Take any ra € rM (where a is just an arbitrary element of
M soa=(hy,...,ht)), then ra = r(h1,...,hg) = (rh1,...,rhy) € pH @ - - - ® pHy,. Similarly, take
any (rhy,...,rhg) € rHy ®---®rHy, then (rhy, ..., rhy) is isomorphic to r(hy, ..., ht) = ra € rM.
Therefore rM =rH, ®--- ®rHy. =

We will now show how we can reduce the problem to showing that there is only one way to
write R/(p™*) @ ---@® R/(p™*) (where p is irreducible), by showing that if ¢ has no common factors
with p then gR/(p™) is isomorphic to R/{p™).

THEOREM 4.5 If R is a Euclidean domain and p, ¢ € R have no common factors then the
R-module gR/{p) is isomorphic to R/{p). Proof: Let R be a Euclidean domain and suppose p,q € R
have no common factors. Now consider the mapping ¢: R — qR/(p) defined by ¢(z) = gz + (p).
Clearly this mapping is well defined. The fact that ¢ is onto and satisfies the homomorphism
properties is trivial and will be omitted. Consider the kernel of this homomorphism. Notice that
0+ (p) = ¢(z) = qz + (p) if and only if p|gx. Then since R is a unique factorization domain and p
and ¢ have no common factors, p|z. Therefore the kernel of ¢ is (p). So by the first isomorphism
theorem R/(p) is isomorphic to ¢R/(p). m

We will now that the the size of the minimum generating set of the R-module, R/(p™ ) @ --- @
R/(p™*) is k (where p is an irreducible element of R).

THEOREM 4.6 If R is an Euclidean domain and p is an irreducible element of R, then the
size of the minimum generating set of the R-module, M = R/(p™) & --- ® R/(p™*) is k. Proof:
Suppose that R is a Euclidean domain and that p is an irreducible element of R. Also suppose that
the minimum generating set for the R-module, M = R/{(p™') & --- & R/(p™*), (where m; > 0), is
smaller than k. We can even suppose it is size k— 1 since we can always add elements to a generating
set. Of course there already exists a generating set of size k: the columns (or rows) of the k x k
identity matrix. Consider the mapping ¢: M — (R/{p))*, where (R/{p))* = (R/()) ® ---® (R/(p))
(k times). We define ¢((z1 + (p™ ), z2 + (p™2), ..., 2k + (p™*))) = (z1 + (), T2 + (D), ..., Tk + (P))).
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This mapping is well defined, for if z + (p™) = y + (p™) then x — y = np™ for some n € R, thus
z—y = (np™Yp € (p), thus = + (p) = y + (p). The fact that it is an onto homomorphism is
obvious so the proof will be omitted. Now consider R/{p) ® --- ® R/(p). Since p is irreducible and
since a Euclidean domain is a principal ideal domain, (p) is maximal. Thus R/(p) is a field (when
you multiply from elements of R/(p)); let us call it F. Now since R/(p™ ) @ --- ® R/{p™*) has a
generating set of size k — 1, so does F* as an R-module since ¢ is an onto homomorphism. Suppose
we call this generating set B = {by,...,b;_1}. Since B is a generating set it generates e1, ..., ex, the
natural generating set for F*_ or in other words the columns of the k x k identity matrix. That is for
each e; there exist r1 ;,...,7x_1,; € R such that ry ;b1 +---+rg_1,;br_1 = e;. Remember both these
elements, the b;’s and the e;’s, are all cosets of (p). Since r;; € Rfor j=1,.,k—landi=1,...,k,
thus r;; + (p) € R/(p) for j =1,.,k—1and i = 1,...,k. Then in the F = R/(p) vector space F*
we have that (r1; + (p))b1 + -+ - + (rk—1.: + (p))bk—1 = €; and thus we have a generating set for F*
smaller than the basis {e;,..., ey}, a contradiction. Thus the smallest generating set is of size k. m

The above theorem is vitally important for the proof that the factorization is unique. We have
only more thing to show before we can prove our main theorem. We will now show that R/(p") is
isomorphic to p* R/ (p"t*).

THEOREM 4.7 If R is an integral domain and p is an element of R then the R-module
R/(p") is isomorphic to the R-module p*R/(p"**). Proof: Let R be a Euclidean domain and
let p be an element of R. Consider the natural homomorphism from R onto pfR/{p"**), where
#(x) = p*z + (p"*+*). Consider the kernel of this mapping and notice that ¢(z) = 0 if and only if
p"t*|p¥z. Thus since R is a unique factorization domain, p"+*|p"z if and only if p™|z, so the kernel
of ¢ is (p"). Therefore by the first homomorphism theorem, the R-module R/{p™) is isomorphic to
the R-module p*R/(p"**). m

We can now prove that the factorization is unique.

THEOREM 4.8 Let R be a Euclidean domain, and let py,...,pk,q1,---,q be irreducible
elements of R. Thenif M = R/(p1™*)®- - -®R/(py™*) is isomorphicto N = R/{¢:™ )& - -®R/{q™),
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and if R/(p;") is a factor of M, then it is one of the factors of N, or in other words there exists
a j such that p; = ¢; and m; = n;. Proof: Let R be a Euclidean domain, let pi,...,pr,q1,-..,q
be irreducible elements of R and suppose that the R-module M = R/(p1™) @ --- ® R/{px™*) is
isomorphic to the R-module N = R/{¢:™) & --- ® R/{¢™). Now suppose that we group all the
factors where p; = p; together. We want to be able to consider one irreducible at a time and show
that both sides have that common factor. Without loss of generality, let us consider just one of
the p;’s, say p1. Let p = [ p™, and let ¢ = [] ¢™. Of course pgM is still isomorphic to
PiFp1 4iF#p1
pgN. By theorems 4.4 and 4.5, and since R is a unique factorization domain, pgM is isomorphic
to R/(p1%1) @ --- @ R/(p1°) and pgN is isomorphic to R/{(p1"*) & --- @ R/(p1'™) where every said
factor of pgM is a factor of M and every factor of pgN is a factor of N, and also every factor of M of
the form R/(p:*) is a factor of pgM and every factor of N of that form is also a factor of pgN. Or in
other words we wiped out all of the factors of the form R/(a) where a # p: because in that case a|pg.
The number of factors in pgM and pgN must be the same by theorem 4.6. We shall also assume
that s, < --- < s; and ¢, < --- < t;. We want to show that ¢; = s;. Remember we know that
R/(p1**)®---®R/(p1®) is isomorphic to R/{p1"*)®---® R/{p1'™). Suppose that t; > s;; notice of
course that p1¥ R/(p1°*)®---®p1* R/ (p1°m) is still isomorphic to p1* R/{(p1*1)®---®p1* R/ {p1!™).
But the first factorization clearly has a larger minimum generating set because multiplying by p; *
wipes out all of the factors generated by p:® where s; < s; because of theorem 4.7 and the fact that

Sm < ---<s; and t,, <--- <t;. But that is a contradiction. We arrive at the same contradiction

if we suppose that s; > t;. Therefore t; = s;. This proves that all the factors of M are factors of N.

But we can also prove that every factor of N is a factor of M in exactly the same way. Thus,
there is only one way to express a finitely generated R-module as a direct product of elements of

the form Rt ® R/{(p1™) & --- ® R/(px™*). m

Now since we also have theorems 4.1 and 4.2, we have proved that we can write a finitely
generated R module in a unique form. This form is completely analogous to what we have already
done in finite Abelian groups. Notice that since a finitely generated Z module is also an Abelian
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group we have proved that every finitely generated Abelian group is isomorphic to direct product
VAN ZLipymi @ -+ ® Lp,mw, where p; is prime, and this is the only such product that the finitely
generated Abelian group is isomorphic to. This completes the proof of our main theorem. We will
now go on to consider some special cases of Euclidean domains, particularly polynomials, where we

can apply our results.
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Part 5: An Application to Polynomials

Let F be a field. Remember that F[z] is a Euclidean domain with d(f(z)) = degreef(x) for
any f(z) € F[z]. Consider the Abelian group F", where n is a natural number. Normally we
multiply elements of F™ by elements of F' to give us an n dimensional vector space. However, we
can also multiply by polynomials from F[z] so long as we carefully define what we mean. Let L be
an n x n matrix with entries from the field F. Suppose that f(x) = ayz* +-- - +ao; then let us define
f(L) = axL* + a1 L*~! + --- 4+ aoI where I is the identity matrix. Notice that for polynomials
frg € Flz], (f + 9)(L) = f(L)+ g(L) and (fg)(L) = f(L)g(L), since when adding or multiplying
polynomials in z we collect like terms and we can perform the same procedure on polynomials of
matrices. Let us define how multiplication from F[z] works. Take any v € F™ and any f(z) € F[z]
and let us define f(z)v = f(L)v. Since (f + ¢g)(L) = f(L) + g(L) and (fg)(L) = f(L)g(L), this

satisfies the properties needed to be a module.

Definition 5.1  We denote the module F™ with scalar multiplication from F[z] where f(z)v =

f(L)v for f(z) € Fz], v € F™, and some fixed n x n matrix L, as (F™).. m

Let us remind ourselves that two n X n matrices, L; and L», are called similar if there exists
some invertible matrix P such that PL; P~' = L. Also recall that similar matrices have the same
characteristic polynomial and thus the same eigenvalues (Lay 309). We say that a matrix is diago-
nalizable if it is similar to a diagonal matrix. Notice that if L; = PLyP~! then ;" = PL,"P~L.
This is easy since L" = (PLyP7)(PLyP~1)(PLyP7Y) ---(PLyP~') = PLy(P~'P)Ly(P~1P)
- (P7'P)LyP~' = PL}PL.

Lemma: If L; = PLyP~! for matrices Ly, Ly, and P (P invertible), then for any f(z) € F[x],
f(L1) = Pf(Ly)P~1. This is easy to see, for if f(z) = a,z"+---+a1z+ag, then f(L1) = an(L1)"+
---+ay(L1)+aol = an(PLyP~ Y+ -+ay;(PLy P~ Y)4ao(PIP') = Pa,Ly" P~ +-- -+ PagIP~! =

P(f(Ls2))P~!, which completes the proof. m

We will now prove an interesting theorem relating these modules to the problem of similarity
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of matrices.

THEOREM 5.1 Suppose that L; and Lo are n X n matrices with entries from a field
F. Then (F™)r, is isomorphic to (F™)r, if and only if Ly and L, are similar. Proof: Suppose
that L1 and Lo are similar matrices, that means that PL;P~! = L, for some invertible matrix
P. Define ¢: (F™), — (F™)r, by ¢(v) = P~lv for any v € F™. This mapping clearly satisfies
the additive homomorphism properties, and since P is invertible, it is a bijection as well. All is
that is left to show is that ¢(f(z)v) = f(z)¢(v). For any v € (F™)r, and f(z) € F[z] we have
that ¢(f(z)v) = P~Y(f(L1)v) = P~Y(Pf(L2)P~tv) = f(L2)(P~'v) = f(x)¢(v), which completes
the first direction. Now to prove the converse, suppose that (F™)r, and (F™)r, are isomorphic as
R-modules. Let ¢ be any isomorphism between them, Remember that ¢ is completely determined
by its action on a generating set. The most obvious generating set is {es, ..., e}, the columns of
the n x n identity matrix. Now ¢ must also map these elements to a generating set, say {ai,...,an}.
Since {ey,...,en} can generate all elements of (F™)r, using only polynomials of degree 0 (which is
just multiplication by elements of F), so can {ay,...,a,}. Thus ¢ is a matrix transformation that
takes v to Av, where the columns of A are a; through a,. Notice that since the columns of A span
F™ as an F-module, A is invertible. Consider the inverse isomorphism ¢!, since inverse matrices are
unique, ¢~ (v) = A~lv. Therefore for i = 1,...,n, ALie; = ¢(Li1e;) = d(we;) = xd(e;) = Lo Ae;.
Thus, since AL e; = Lo Ae; for all e;, we know AL; = Ly A, and therefore AL;A~! = Ly so L; and

Ly are similar, which completes the proof. m

We can use the theorems we developed in sections 3 and 4 to examine the nature of these

modules for particular matrices. We will first consider what happens when L is a diagonal matrix.

THEOREM 5.2 If F is a field and L is a diagonal matrix with entries from F' then the
F[z] module F™ where f(z)v = f(L)v for f(z) € F[z] and v € F™, is isomorphic to F[z]/(z —
b)) ® --- ® F[z]/{z — b,) where by,...,b, are the entries along the diagonal of L. Proof: It is
sufficient to prove that the kernel of the natural surjective homomorphism ¢ that takes (F[z])™ to
the F[z] module (F™)r using the generating set {e1,...,en}, (the columns of the n x n identity
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matrix), is (x —b1)®---®{x—b,). Now ¢((f1(x),..., fn(x))) = fi(x)e1 +- -+ fu(x)e,. Notice that

since L is diagonal L* is diagonal with entries along the diagonal of b:*,... b,*. Thus if f(z) =
fby) 0 .. 0
0 f(b2) . 0

arz®+ap_12¥ 1 +---+a12+ag, then f(L) = a,L*+---+a; L+aol =

0 0 .. f(bp)
Suppose that ¢((fi(2),--., fn(2))) = 0, then fi(L)ey + - + fu(L)en = 0. Therefore fi(by) =0,
f2(b2) = 0 and so on all the way through f,(b,) = 0. Thus z — b; divides f;(z), so therefore
Kerg C ({x — b1),...,{x — by)). But clearly from the above logic, ({(x — b1),...,{(zx — b,)) C Ker¢

as well, which completes the proof. m

Notice that this result extends to all diagonalizable matrices as well, since if L is diagonalizable
it is similar to a diagonal matrix D, and thus (F™)r, is isomorphic to (F™)p. Then since the
eigenvalues of D are simply the entries along the diagonal and since similar matrices have the same
eigenvalues, (F™)r is isomorphic to F[z]/{z — b)) & --- & F[z]/{(x — by), where b1,...,b, are the
eigenvalues of L. Notice that the product of the (z — a;)’s is the characteristic polynomial for L. In

later theorems, we will extend this result to non-diagonalizable matrices.

Suppose we are given a particular polynomial p(z) and we want to construct an F[z] module,
(F™) g, isomorphic to F[z]/p(z). What matrix should we use? We will first show how to construct

a matrix with a given characteristic polynomial.

THEOREM 5.3 The the characteristic polynomial of the matrix

0 0 0 0 —ao
1 0 0 0 -a
o 1 0 0 —ay
A4=10 o 1 0 —as
0 0 0 1 —an.

is p(z) = (=1)"(A\" + a, 1 A"t +--- +a;X+ag). Proof: We will use induction on n. Our base

-2 —agp

case is n = 2. Note that the determinant of the matrix ( L a A\
—aj —

) is A™ + a1 A + ag. Now
assume that the statement is true up to n — 1, and consider the n x n matrix A minus the identity
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matrix multiplied by .

- 0 0 —ap

1 -2 0 —ai
A=A, = 0 1 0 —a2

0 0 .. 1 —a,1—2AX

We will use cofactor expansion along the first row to calculate the determinant. Notice the only
columns we need to concern ourselves with are the first and the last. Thus our characteristic
polynomial is

-2 0 0 —aq

1 =X 0 —ay ! _1’\ _0/\ 8
—Adet| 0 1 0 —as + (=1)""!(~aq)det
0 0 ... 1 —ap1—2AX 0 0 0 1

By the induction, hypothesis the determinant of the first matrix is (—=1)" "' (A" ™' +a,_ A" 2+ -+
asA+ay), and clearly the determinant of the second matrix is 1. Thus the characteristic polynomial
of Ais —A(=1)" 1A\t 4 a, 1 A" 2+ +ad+a1) + (=1)""L(—=ag) = (=1)"(A\" + an_1 A" 1 +
st aaX? + a1 ) + (—1)"ag = (—1)"(A" + an_1 A"t + - - - + a2A? + a1 A + ag) which completes the
proof. m

We will denote the matrix created in the above theorem for the specific polynomial p(x) as Ap ().
Suppose using the theorems from the previous sections for a particular matrix L we end up with a
module isomorphic to F[z]/(p(z)) where p(z) is not necessarily irreducible. We can assume without
loss of generality that p(z) is of the form (—1)"(z™ + ap_12™ "' + - -+ + ag). By the previous there
exists a matrix A,y whose characteristic polynomial is p(z). We will now show that F[z]/(p()) is
isomorphic to the F[z] module (F™)4,,,-

THEOREM 5.4  Suppose that p(z) € F[z] and the degree of p(z) is n, then F[z]/(p(z))
is isomorphic to (F")a4,,,- Proof: We can assume without loss of generality that p(z) is of the
form (—1)"(z™ 4+ an_12"" ! + -+ + ag) because (p(z)) = (q(x)) for some monic polynomial, ¢(z).
Suppose that p(z) = (—=1)*(z"™ +an_ 12" ' +--- 4+ a1z + ag). Notice that {1,z,22,...,2" !} forms
a generating set of size n for F[z]/{(p(z)) as an F' module and thus as an F[z] module as well.
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Also note that {ei,...,e,} forms a generating set for F™ as an F-module, and thus again as an
F[z] module. Notice that for any f(z) + (p(z)) € F[z]/{p(z)), f(z) + (p(x)) = (bp_12™ 1 +--- +
biz + bo) + (p(x)) for some b,_1,...,bp € F. Define a mapping ¢: F* — F[z]/(p(z)), where for
any a € F", ¢(a) = dlare; + -+ + anen) = (anz™ ' + -+ + asx + a1) + {p(z)) where a; is the
i’th entry of a. Clearly this mapping is well defined since there is no ambiguity in the domain of
the function. This mapping is also surjective since every element in F[z]/{p(z)) can be written
in the form a, 12"~ + --- + a1z + ap + (p(x)). This mapping is an additive homomorphism,
since p(v + w) = P((v1 + wi)er + -+ + (v + wp)en) = (vn + wp)z" ™ + -+ + (v1 + w1)) +
(p(2)) = (vaz" " + -+ +v1) + (p(@))) + (Waz" ™" + -+ w1) + (p(2)) = (v) + d(w). We also
must show that this mapping is an injection. For convenience, for any v € F™ we will denote
fo(2) = vz ! + -+ 4+ v; where v1,...,v, are the entries of v. Now suppose that ¢(v) = ¢(w),
then fy(z) + (p(z)) = fuw(z) + (p(x)), so fu(z) — fu(z) € (p(z)). Since both f,(z) and f,(z) have
degree less than n, so does their difference. Thus since the degree of p(x) is n, f,(z) — fu(z) =0,
50 fo(z) = fuw(z) and v = w. Thus the mapping is one-to-one. To complete the proof that ¢
is an isomorphism it is enough to show that ¢(ze;) = zd(e;) and that ¢(te;) = to(e;) for any
t € F, because we can construct any polynomial out of z’s and elements of F. For example, if
these conditions hold, note that ¢((z2 + z)v) = ¢(z?v) + ¢(zv) = zd(zv) + zo(v) = (22 + z)p(v).
Notice that ¢(ze;) = ¢(Aym)ei) = ¢(Ai), where A; is the i’th column of A,,). Suppose that
i € {1,...,n—1}, then clearly, ¢(4;) = d(e;y1) = z* + (p(z)) = z(z* 1 + (p(z))) = z¢(e;). Now for
i =mn, p(ze;) = d(zen) = ¢(Apz)en) = (—n12™ 1+ —an_22™ % + - + —a12 + —ao) + (p(z)).
Remember that p(z) = 2" +an_12" "1 +- - -+a12+ag, thus 2" +(p(z)) = (—ap_12" 1 +—ap_22" >+
-+ —ayr+—ag) + (p(z)), so now we have that ¢(ze,) = z" + (p(z)) = z(z" ! + (p(z))) = zd(ey,).
Therefore ¢(ze;) = z¢(e;). But also clearly ¢(te;) = txi~t + (p(z)) = t(z'~* + (p(z))) = to(e;).

Therefore ¢ is an F[z] module isomorphism, which completes the proof. m

We will now show how to paste these matrices together to get arbitrary F[z] modules of the

form Flz]/(p1(z)) ® - - - ® F[z]/(pe(2)).
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THEOREM 5.5 If F is a field then the F[z] module of the form F[z]/{pi(z)) & --- ®

F[z]/{pk(z)) is isomorphic to the F[z] module F" generated by the n x n block matrix

Apw 0 .. 0
a| 0 Anw - 0
0 0 Ap

where n is the sum of the degrees of the polynomials p; (z) through pi(z) and A,,(,) is the matrix
from theorem 5.3 with characteristic polynomial p;(x). Proof: First let us define d; to be the
degree of the polynomial p;(z). To prove this theorem, we will use induction on k. Result 5.4
provides a base case, so suppose that the statement is true up to k — 1. Consider F[z] modules
Flz]/{p1(z)) & --- ® Flz]/{px(z)) and (F™)4, (where A is defined as above). By the induction
hypothesis F[z]/(pi(z)) @ --- @ F[z]/{(px_1(z)) is isomorphic to the F[z] module F"~ % generated

by the block matrix

Apl(w) 0 0
A[ — 0 APQ(.Z) P 0
0 0 o Ap (@)

So there exists an F[z] module isomorphism, call it 1 that takes (F™ %) onto F[z]/(pi(z)) &
.-+ @ F[z]/(pr—1(z)). Also by theorem 5.4, there exists an isomorphism  that takes (F'),4

P (=)
onto F(z]/{pk(z)). Now then we want to show that (F™) 4 is isomorphic to (F"~%) 4 @ (F%) 4, ..
To see this take any v € (F™) 4, and define v; to be the first (n — dj,) entries of v and vy the last d,
entries of v. Now consider the mapping ¢: (F") 4 — (F"~%) 4 @ (F%™) 4, ,, where ¢(v) = (v1,02).
It is obvious that this mapping is an additive isomorphism, so all that we need to check is that it
preserves multiplication by polynomials. Again it is enough to check that it preserves multiplication
by z and elements from F. Note that ¢(zv) = ¢(Av) = ((Av)1, (Av)2). Now since the entries of the
first (n—dy) columns of the last dj rows of A are all zero, and the last dj, columns of the first (n—dj,)
rows are also zero, (Av); = A'vy and (Av)s = A, (5)v2. Also, for any t € F, clearly ¢(tv) = té(v).
Thus ¢ is an F[z] isomorphism. Therefore (F™) 4 is isomorphic to (F"~%) 4 @ (de)APk(m) which is
isomorphic to F[z]/{p1(z)) & --- & F[z]/{pr_1(x)) & F[z]/{pr(x)) which completes the proof. m

We need one more theorem before we can write down some interesting corollaries. We need to
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show that the characteristic polynomial of A, from the above theorem, is the product of the p;(z)’s.
THEOREM 5.6 Let F be a field and let us take any polynomials p; (x),...,pr(z) € F[z]
of the form (—1)"(z" + an—12"' + -+ + ag). Then define A, (,) through A, (,) as was done in

theorem 5.3. Then the n x n matrix

Apwy 0 . 0
Al 0 Anw 0
0 0 v Ay

has characteristic polynomial of py (z)p2(x) - - - pr.(x)r where r is an element of F. Proof: Again let
d; be the degree of the polynomial p;(x). One method to find determinants is to reduce the matrix to
echelon form and then multiply the elements along the diagonal together (multiplying by any scalars
you may have used to reduce the matrix and also multiplying by —1 for every time you interchanged
two rows). Suppose we let B = A — A\I, where I is the n X n identity matrix. When calculating the

determinant of this matrix in this fashion we can effectively do each block of the matrix (A4 =)

pi ()

separately. Then it is clear that the determinant of A — AT, is just the determinant of A — Ay,

p1()
multiplied by the determinant of A,, ) — Al4, and so on. Thus the characteristic polynomial of A
is plus or minus p1 (z)p2(z) - - - pr () since the characteristic polynomial of A,, .y is just (—1)%p;(z).
This completes the proof. m

We can further characterize the polynomials p; (x) through pg(z).

THEOREM 5.7  If the F[z] module (F™), is isomorphic to F[z]/{p1(2))®- - -® F[z]/{pr(x)),
then the characteristic polynomial of L is some element in F multiplied by the product of the
polynomials p; (z) through py(z). Proof: Any F[z] module (F™)r, where L is an n X n matrix over
F, is isomorphic to F[z]/(pi1(x)) ® - - - ® F[z]/(pk(z)), for some polynomials p; (z) through pi(z) by
theorem 3.3. By our previous theorems, it is easy to see that the product p(z) = 1]2[1 pi(x) must be

i=
unique for any such factorization (up to multiplying by an element from the field, which is of course
a unit), since to get to our unique factorization we factored the p;(z)’s into relatively prime parts.
Now this module is itself isomorphic to (F™)4 where A is the block diagonal matrix described in

5.5 and 5.6 with submatrices A, ;). Therefore, (F") 4 is isomorphic to (F™)r, which means A and
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L are similar by theorem 5.1. Furthermore, as we noted earlier, they have the same characteristic

polynomial. Thus, since the characteristic polynomial of A is the product of the p;(z)’s and some
k

field element, we have that [] p;(x) multiplied by some field element is the characteristic polynomial

i=1

of L. This completes the proof. m

Note this also proves that the degree of the product of the p;(z)’s is n. We can now prove a

very interesting theorem about the characteristic polynomial.

THEOREM 5.8  Suppose that p(z) is the characteristic polynomial of L, which is some
n X n matrix over a field F. Then p(L) is the zero matrix. Proof: Let F be a field, L be an n x n
matrix over a field. Using theorem 3.3 the F[z] module (F™) is isomorphic to F[z]/{p1(z)) & --- ®
F[z]/{pr(z)) for some p;(x),...,pr(z) € F[z]. Thus there exists an isomorphism between them
whose domain is the F[z] module (F™)r; let us call this isomorphism ¢. By 5.7, [[pi(z) = rp(x)
for some element r € F. Notice that for any element v € Flz]/(pi(z)) & --- & F[z]/{pr(x)),
p(x)v = 0. Thus 0 = ¢(0) = d(p(x)v) = p(x)p(v) = p(L)p(v). Since this holds for all v €
Flz]/{p1(z)) ®--- ® F[z]/{pr(x)) and since ¢ is surjective, p(L)e; = 0. Thus every column of p(L)

is zero, and therefore p(L) is the zero matrix. m

Let us conclude this section by comparing the F[z] module (F™)y to a finite Abelian group,
a Z module. Notice that the above theorem essentially states that the characteristic polynomial of
a matrix is the order of the (F™)r, module in the same way as the order of a finite Abelian group
Lipin1 @+ - - @ Lpnr is p1™ pa™ - - - pp™*. Notice that for every finite Abelian group we have associated
with it, a unique unordered sequence of prime integers raised to powers that completely determines
the structure of the group. Furthermore, every two finite Abelian groups that have this sequence of
integers are isomorphic. For the F[z] module (F™)y, we have the same situation except that we have
a unique unordered sequence irreducible polynomials raised to powers that completely determines
the structure of the module. Since two F[z] modules, (F™)r, and (F™)r, are isomorphic if and only
if L; and Ly a similar, it is easy to see that for every matrix there is a unique sequence of powers
of irreducible polynomials associated with it such that two matrices are similar if and only if they
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have the same sequence of polynomials. Finally notice that a matrix is diagonalizable if all these
polynomials have degree 1.

In summary, we have proved that when R is a principal ideal domain, every submodule of a
finitely generated R-module is finitely generated. We have proved that when R is a Euclidean domain
we can factor any finitely generated module uniquely as a module of the form R/(p1"™)®- - -®R/(py™*
where the p;’s are irreducible. We have also proved that when p(z) is the characteristic polynomial

of a matrix L, that p(L) is the zero matrix.
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