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The purpose of this short exposition is to give several examples of
odd behavior of seminormal schemes. All rings and schemes considered
here will be assumed to be noetherian, although certain generalizations
without that hypothesis apply. (Of course all rings are commutative
with unity and maps of rings send 1 to 1). I am making no claim as
the originality of these examples, see the references at the end of this
document for a more complete picture.

First let us recall the definition of a seminormal scheme.

Definition 0.1. A finite birational map of reduced schemes f : X → Y
is called subintegral if it is a bijection on points, and for every point
x ∈ X with y = f(x), the induced map of residue fields k(y) → k(x)
is an isomorphism. We call a map of rings subintegral if it induces a
subintegral map of schemes.

Remark 0.2. Usually subintegral refers only to extensions of rings R ⊂
S, and Greco and Traverso [GT80] used the word quasi-isomorphism
for such a map of schemes. I use the word subintegral here since it is
commonly used in the ring-theoretic setting.

There is one other characterization of subintegrality which first ap-
peared in [Ham75], but also see [Swa80] and [LV81a].

Theorem 0.3. Let A ⊂ B be a ring extensions. Then A is subintegral
in B if every element b ∈ B such that b2, b3 ∈ A also satisfies b ∈ A.

Definition 0.4. A reduced scheme X is called seminormal if every
subintegral map Y → X is an isomorphism.

Note that a normal scheme is seminormal. Geometrically speaking,
a scheme is seminormal if all the non-normality it has is due to gluing
points (subschemes) together and that gluing is done as transversally
as possible.

A common misconception is that one needs only consider bijective
maps. This is not the case if one does not work over an algebraically
closed field of characteristic zero, as the following examples show. One
also often needs the finiteness hypothesis.
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Example 0.5. Two different seminormal schemes over a field of char-
acteristic zero with a finite bijective birational map between them

There are several ways to construct seminormal varieties with a fi-
nite bijective map between them. Consider the rings with inclusion
map R[x, ix] ⊂ C[x]. The two rings are clearly birational and the map
is clearly finite. They are also both finite type over a field of charac-
teristic zero. I claim that map between them is bijective. Consider
the SpecR[x, ix]− (x, ix) (the punctured plane). It is easy to see that
this is just SpecC[x] with the origin removed and map above induces
the isomorphism. On the other hand, the ideal (x) ⊂ C[x] has inverse
image (x, ix) in R[x, ix] and so the two maps are in fact bijective. It
is not difficult to check that both schemes are seminormal. Note that
the map above is not subintegral since the residue fields at the origin
are R and C respectively.

It is not even enough to biject on points and have isomorphic residue
fields on the closed points over an algebraically closed field.

Example 0.6. Two different seminormal schemes over an algebraically
closed field of positive characteristic with a finite birational bijective
map between them

Let k be an algebraically closed field of characteristic 2 (similar ex-
amples can be constructed for any field of positive characteristic). Con-
sider the map of rings k[x2, xy, y] ⊂ k[x, y]. The first ring is the coordi-
nate ring of the pinch point. It clearly induces a birational finite map
of schemes. Outside of the ideal (y, xy) ⊂ k[x2, xy, y], corresponding
to (y) ⊂ k[x, y] the map is clearly an isomorphism. However, if we
mod out by those ideals we have k[x2] ⊂ k[x] which clearly bijects
on points. In fact, we see immediately that the map induces an iso-
morphism of residue fields of the closed points (they are all k). Both
schemes are easily seen to be seminormal and the map induced by the
inclusion is not subintegral since the residue field at the generic point of
(y, xy) ⊂ k[x2, xy, y] is k(x2) and the residue field at the corresponding
point (y) ⊂ k[x, y] is k(x).

The finiteness requirement in the definition in subintegral is neces-
sary as well, as the following example of [Vit87] indicates.

Example 0.7. Two different birational seminormal varieties over an
algebraically field of characteristic zero, with a bijective map between
them

Let C be a nodal curve and C be it’s normalization. Let x, y ∈ C
be the two points that lie over the node. Then the map C\{x} → C
is a bijective birational map which induces isomorphisms of all residue
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fields between two different seminormal schemes. But this is ok, the
map is not subintegral because it is not finite.

Remark 0.8. This sort of example only occurs in dimension 1, see
[Vit87] for details.

There are examples of seminormal rings R with minimal primes p
such that R/p is not seminormal. Probably the easiest example of this
is found in [GT80].

Example 0.9. Let X = A2 = Spec k[x, y] and Y = A2 = Spec k[u, v].
The idea is to glue X to Y along a closed subset. We choose the subset
L = Spec k[x, y]/(y) of X and the subset C = Spec k[u, v]/(u3 − v2) of
Y and we glue by the map

k[u, v]/(u3 − v2) → k[x, y]/(y)

that sends u to x2 and v to x3. The coordinate ring of this gluing is

k[a, b, c, d, e]

(b, a, c3 − d2 − e) ∩ (e, bc− ad, c3 − d2, ac2 − bd, a2c− b2, a3d− b3).

Let I = (b, a, c3 − d2 − e) and J = (e, bc − ad, c3 − d2, ac2 − bd, a2c −
b2, a3d − b3). It is easy to see that both I and J are prime (with a
computer algebra program).

Note that k[a, b, c, d, e]/I can be identified with k[c, d] so it is just a
copy of A2. On the other hand k[a, b, c, d, e]/J is

k[a, b, c, d]/(bc− ad, c3 − d2, ac2 − bd, a2c− b2, a3d− b3)

This can be thought of as k[x, y] with the tangent space at the origin
is killed in one direction (it can also be written as k[y, xy, x2, x3]). By
basic facts about gluing it is easy to see that

R = k[a, b, c, d, e]/(I ∩ J)

is seminormal (see [GT80] for another explanation), but it clearly has
a minimal prime J , such that R/J is not seminormal.

In some sense the key point here was that when gluing X to Y , X
had to be made non-seminormal because you were turning a line on X
into a cuspidal curve.
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