
First let us fix a small universe to work in. Let Sch denote the category of reduced schemes.
One should note that the usual fibred product of schemes X×S Y need not be reduced, even
when X and Y are reduced. We wish to construct the fibred product in the category of
reduced schemes. Given any scheme W (reduced or not) with maps to X and Y over S,
there is always a unique morphism W → X ×S Y . But, we have a natural unique morphism
Wred → (X ×S Y )red. Thus (X ×S Y )red is the fibred product in the category of reduced
schemes.

Let us denote by 1 the category {0} and by 2 the category {0→ 1}. Let n be an integer
≥ −1. We denote by �+

n the product of n+ 1 copies of the category 2 = {0→ 1} [GNPP88,
I, 1.15]. The objects of �+

n are identified with the sequences α = (α0, α1, . . . , αn) such
that αi ∈ {0, 1} for 0 ≤ i ≤ n. For n = −1, we set �+

−1 = {0} and for n = 0 we have
�+

0 = {0→ 1}. We denote by �n the full subcategory consisting of all objects of �+
n except

the initial object (0, . . . , 0). Clearly, the category �+
n can be identified with the category of

�n with an augmentation map to {0}.
Definition 0.1. A diagram of schemes is a functor F from a category C op to the category of
schemes. A finite diagram of schemes is a diagram of schemes such that the aforementioned
category C has finitely many objects and morphisms; in this case such a functor will be
called a C -scheme. A morphism of diagrams of schemes F : C op → Sch to G : Dop → Sch
is the combined data of a functor φ : C op → Dop together with a natural transformation of
functors f from F to G ◦ φ.

Remark 0.2. With the above definitions, the class of (finite) diagrams of schemes can be
made into a category. Likewise the set of C -schemes can also be made into a category
(where the functor φ : C → C is always the identity functor).

Remark 0.3. Let I be a category. If instead of a functor to the category of reduced schemes,
one considers a functor to the category of topological spaces, or the category of categories,
one can define I-topological spaces, and I-categories in the obvious way.

If X� : Iop → Sch is an I-scheme, and i ∈ I, we denote by Xi the scheme corresponding
to i. Likewise if a ∈ I is a morphism a : j → i, then Xa will denote the corresponding
morphism Xa : Xi → Xj. If f : Y� → X� is a map of I-schemes, we denote by fi the induced
map Yi → Xi. If X� is an I-scheme, a closed sub-I-scheme is a morphism of I-schemes
g : Z� → X� such that for each i ∈ I, the map gi : Zi → Xi is a closed immersion. We will
often suppress the g of the notation as no confusion is likely to arise. More generally, any
property of a morphism of schemes (projective, proper, separated, closed immersion, etc...)
can be generalized to the notion of a morphism of I-schemes by requiring that for each object
i of I, gi has the desired property (projective, proper, separated, closed immersion, etc...)

Definition 0.4. [GNPP88, I, 2.2] Given a morphism of I-schemes f : Y� → X�, we define
the discriminant of f to be the smallest closed sub-I-scheme Z� of X� such that fi : (Yi −
(f−1
i (Zi)))→ (Xi − Zi) is an isomorphism for all i.

Definition 0.5. [GNPP88, I, 2.5] Let S� be an I-scheme, f : X� → S� a proper morphism of
I-schemes, and D� the discriminant of f . We say that f is a resolution of S� if X� is a smooth
I-scheme (meaning that each Xi is smooth) and dim f−1

i (Di) < dimSi, for all i ∈ Ob I.

Remark 0.6. This is the definition found in [GNPP88], and essentially the one found in the
book by Peters and Steenbrink, [PS08]. This is different from the one I gave in the seminar.
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In particular, they have the additional requirement that dim f−1
i (Di) < dimSi. They don’t

require that the maps are surjective (of course, the ones they construct in practice surjective).
Consider the following example: the map k[x, y]/(xy)→ k[x] which sends y to 0. I claim

that the associated map of schemes is a “resolution” of the ∗-scheme, Spec k[x, y]/(xy). The
discriminant is Spec k[x, y]/(x). The pre-image however is simply the origin on k[x], which
has lower dimension than “1”. Resolutions like this one are sometimes convenient to consider.

On the other hand, this definition seems to allow something it shouldn’t. Choose any
variety X of dimension greater than zero and a closed point z ∈ X. Consider the map
z → X and consider the ∗-scheme X. The discriminant is all of X. However, the pre-image
of X is still just a point, which has lower dimension than X itself, by hypothesis.

In view of these remarks, sometimes it is convenient to assume also that dimDi < dimSi
for each i ∈ Ob I. In the resolutions of I-schemes that we construct (in particular, in the
ones that are used to that prove cubic hyperresolutions exist), this always happens.

Let I be a category. The set of objects of I can be given the following pre-order relation,
i ≤ j if and only if HomI(i, j) is nonempty. We will say that a category I is ordered if this
pre-order is a partial order and, for each i ∈ Ob I, the only endomorphism of i is the identity
[GNPP88, I, C, 1.9]. Note that a category I is ordered if and only if all isomorphisms and
endomorphisms of I are the identity.

It turns out of that resolutions of I-schemes always exist under reasonable hypotheses.

Theorem 0.7. [GNPP88, I, Theorem 2.6] Let S be an I-scheme of finite type over a field k.
Suppose that k is a field of characteristic zero and that I is a finite ordered category. Then
there exists a resolution of S.

In order to construct a resolution Y� of an I-scheme X�, it might be tempting to simply
resolve each Xi, set Yi equal to that resolution, and somehow combine this data together.
Unfortunately this cannot work, as shown by the example below.

Example 0.8. Consider the pinch point singularity,

X = Spec k[x, y, z]/(x2y − z2) = Spec k[s, t2, st]

and let Z be the closed subscheme defined by the ideal (s, st) (this is the singular set). Let
I be the category {0 → 1}. Consider the I-scheme defined by X0 = X and X1 = Z (with
the closed immersion as the map). X1 is already smooth, and if one resolves X0, (that is,
normalizes it) there is no compatible way to map X1 (or even another birational model of
X1) to it, since its pre-image by normalization will two-to-one onto Z ⊂ X! The way this
problem is resolved is by creating additional components. So to construct a resolution Y�

we set Y1 = Z = X1 (since it was already smooth) and set Y0 = X0

∐
Z where X0 is the

normalization of X0. The map Y1 → Y0 just sends Y1 (isomorphically) to the new component
and the map Y0 → X0 is the disjoint union of the normalization and inclusion maps.

One should note that although the theorem proving the existence of resolutions of I-
schemes is constructive, [GNPP88], it is often easier in practice to construct an ad-hoc
resolution.

Now that we have resolutions of I-schemes, we can discuss cubic hyperresolutions of
schemes, in fact, even diagrams of schemes have cubic hyperresolutions! First we will discuss
a single iterative step in the process of constructing cubic hyperresolutions. This step is
called a 2-resolution.
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Definition 0.9. [GNPP88, I, 2.7] Let S be an I-scheme and Z� an �+
1 × I-scheme. We say

that Z� is a 2-resolution of S if Z� is defined by the cartesian square (pullback, or fibred
product in the category of (reduced) I-schemes) of morphisms of I-schemes below

Z11
� � //

��

Z01

f
��

Z10
� � // Z00

where

i) Z00 = S.
ii) Z01 is a smooth I-scheme.

iii) The horizontal arrows are closed immersions of I-schemes.
iv) f is a proper I-morphism
v) Z10 contains the discriminant of f ; in other words, f induces an isomorphism of

(Z01)i − (Z11)i over (Z00)i − (Z10)i, for all i ∈ Ob I.

Clearly 2-resolutions always exist under the same hypotheses that resolutions of I-schemes
exist: set Z01 to be a resolution, Z10 to be discriminant (or any appropriate proper closed
sub-I-scheme that contains it), and Z11 its (reduced) pre-image in Z01.

Consider the following example,

Example 0.10. Let I = {0} and let S be the I-scheme Spec k[t2, t3]. Let Z01 = A1 =
Spec k[t] and Z01 → S = Z00 be the map defined by k[t2, t3] → k[t]. The discriminant of
that map is the closed subscheme of S = Z00 defined by the map φ : k[t2, t3] → k which
sends t2 and t3 to zero. Finally we need to define Z11. The usual fibered product in the
category of schemes is k[t]/(t2), but we work in the category of reduced schemes, so instead
the fibered product is simply the associated reduced scheme (in this case Spec k[t]/(t)). Thus
our 2-resolution is defined by the diagram of rings pictured below.

k[t]/(t)

k[t]/(t)

99sssssssss
k[t]

ccGGGGGGGGG

k[t2, t3]

;;wwwwwwwww

eeKKKKKKKKK

.

We need one more definition before defining a cubic hyperresolution,

Definition 0.11. [GNPP88, I, 2.11] Let r be an integer greater than or equal to 1, and let Xn
�

be an �+
n ×I-scheme, for 1 ≤ n ≤ r. Suppose that for all n, 1 ≤ n ≤ r, the �+

n−1×I-schemes
Xn+1

00� and Xn
1� are equal. Then we define, by induction on r, a �+

r × I-scheme

Z� = rd(X1
� , X

2
� , . . . , X

r
� )
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that we call the reduction of (X1
� , . . . , X

r
� ), in the following way: If r = 1, one defines

Z� = X1
� , if r = 2 one defines Z�� = rd(X1

� , X
2
� ) by

Zαβ =

{
X1

0β , if α = (0, 0),
X2
αβ , if α ∈ �1,

for all β ∈ �+
0 , with the obvious morphisms. If r > 2, one defines Z� recursively as

rd(rd(X1
� , . . . , X

r−1
� ), Xr

� ).

Finally we may define what a cubic hyperresolution is

Definition 0.12. [GNPP88, I, 2.12] Let S be an I-scheme. A cubic hyperresolution aug-
mented over S is a �+

r × I-scheme Z� such that

Z� = rd(X1
� , . . . , X

r
� ),

where

i) X1
� is a 2-resolution of S,

ii) for 1 ≤ n < r, Xn+1
� is a 2-resolution of Xn

1 , and
iii) Zα is smooth for all α ∈ �r.

Now that we have defined cubic hyperresolutions, we should note that they exist under
reasonable hypotheses

Theorem 0.13. [GNPP88, I, 2.15] Let S be an I-scheme. Suppose that k is a field of
characteristic zero and that I is a finite (bounded) ordered category. Then there exists Z�, a
cubic hyperresolution augmented over S such that

dimZα ≤ dimS − |α|+ 1,∀α ∈ �r.

Below are some examples of cubic hyperresolutions.

Example 0.14. Let us begin by computing cubic hyperresolutions of curves so let C be a
curve. We begin by taking a resolution π : C → C (where C is just the normalization). Let
P be the set of singular points of C; thus P is the discriminant of π. Finally we let E be
the (reduced) exceptional set of π, therefore we have the following cartesian square

E //

��

C

π

��
P // C

It is clearly already a 2-resolution of C and thus a cubic-hyperresolution of C.

Example 0.15. Let us now compute a cubic hyperresolution of a scheme X whose singular
locus is itself a smooth scheme, and whose reduced exceptional set of a strong resolution

π : X̃ → X is smooth (for example, any cone over a smooth variety). As in the previous
example, let Σ be the singular locus of X and E the reduced exceptional set of π, Then the
cartesian square of reduced schemes

E //

��

X̃

π

��
Σ // X
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is cartesian, and is in fact is a 2-resolution of X, just as with curves.

The obvious algorithm used to construct cubic hyperresolutions does not construct hy-
perresolutions in the most efficient or convenient way possible. For example, applying the
obvious algorithm to the intersection of three coordinate planes gives us the following.

Example 0.16. Let X ∪ Y ∪ Z be the three coordinate planes in A3. In this example we
construct a cubic hyperresolution using the obvious algorithm. What makes this construction
different, is that the dimension is forced to drop when forming the discriminant of a resolution
of a diagram of schemes.

Yet again we begin the algorithm by taking a resolution and the obvious one is π :
(X
∐
Y
∐
Z) → (X ∪ Y ∪ Z). The discriminant is B = (X ∩ Y ) ∪ (X ∩ Z) ∪ (Y ∩ Z),

the three coordinate axes. The fiber product making the square below cartesian is simply
the exceptional set E = ((X ∩ Y ) ∪ (X ∩ Z))

∐
((Y ∩X) ∪ (Y ∩ Z))

∐
((Z ∩X) ∪ (Z ∩ Y )),

making the following square.

E = ((X ∩ Y ) ∪ (X ∩ Z))
∐

((Y ∩X) ∪ (Y ∩ Z))
∐

((Z ∩X) ∪ (Z ∩ Y )) //

φ

��

(X
∐

Y
∐

Z)

π

��
B = (X ∩ Y ) ∪ (X ∩ Z) ∪ (Y ∩ Z) // X

We now need to take a 2-resolution of the 2-scheme φ : E → B. We take the obvious

resolution that simply separates irreducible components. This gives us Ẽ → B̃ mapping to

φ : E → B. The discriminant of Ẽ → E is a set of three points X0, Y0 and Z0 corresponding

to the origins in X, Y and Z respectively. The discriminant of the map B̃ → B is simply
identified as the origin A0 of our initial scheme X ∪Y ∪Z (recall B is simply the three axes).
The union of that with the images of X0, Y0 and Z0 is again just A0. The fiber product of
the diagram

(Ẽ → B̃)

��
({X0, Y0, Z0} → {A0}) // (φ : E → B)

can be viewed as {Q1, . . . , Q6} → {P1, P2, P3} where Q1 and Q2 are mapped to P1 and so on
(remember E was the disjoint union of the coordinate axes of X, of Y , and of respectively

Z, so Ẽ has six components and thus six origins). Thus we have the following diagram

{Q1, . . . , Q6} //

��

Ẽ

��

{P1, P2, P3}
vv

nnnnnnnnnnnn
//

��

B̃
��

�������

��

{X0, Y0, Z0} // E

{A0} //
vv

nnnnnnnnnnnnn
B

�� φ

��������

which we can combine with previous diagrams to construct a cubic hyperresolution.
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Example 0.17. Let us do the previous example in a different way. Suppose that S is the
union of the three coordinate planes (X, Y , and Z) of A3. Consider the �2 or �+

2 scheme
defined by the diagram below (where the dotted arrows are those coming from �+

2 but not
from �2).

X ∩ Y ∩ Z //

��

Y ∩ Z

��

X ∩ Y
ww

ppppppppppp
//

��

Y
ww

pppppppppppp

��

X ∩ Z // Z

X //ww

pppppppppppp
X ∪ Y ∪ Z

ww

Thus we need to find W1 and W2 so that rd{W 1,W 2} gives the diagram above and so that
W 1

� is a two-resolution of S. We start by choosing the inclusion Z → X ∪ Y ∪ Z, which has
discriminant (X ∪ Y ). To complete this square we need in the corner (X ∪ Y ) ∩ Z, thus we
have the 2-resolution (W 1)

(X ∪ Y ) ∩ Z //

��

Z

��
X ∪ Y // X ∪ Y ∪ Z.

Note that the right vertical morphism here is not a resolution of singularities in the usual
sense.

Now we must construct a two resolution of the 2-scheme U =
(
Z ∩ (X ∪ Y ) → X ∪ Y

)
.

Again we will begin with the obvious map from the smooth 1-scheme V =
(
Y ∩ Z → Y

)
.

Now we need merely construct the discriminant, take fiber products, and hope all the objects
are smooth. First we note that the discriminant of (Y ∩ Z)→ (Z ∩ (X ∪ Y )) is X ∩ Z, and
so the discriminant of X ∪ Y → Y is X (typically we would also take the union of that with
X ∪ Z, but that is redundant in this case). At the moment, we have the following diagram
of 2-schemes

(
Y ∩ Z → Y

)
���
�
�

(
X ∩ Z → X

)
//___
(
Z ∩ (X ∪ Y )→ X ∪ Y

)
We take the fiber product (over each element) to obtain Y ×X∪Y X = X ∩ Y and (Y ∩
Z)×Z∩(X∪Y ) (X ∩ Z) = X ∩ Y ∩ Z (since k[x, y, z]/(y, z)⊗ k[x,y,z]

(z,xy)

k[x, y, z]/(x, z) is equal to
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k[x, y, z]/(x, y, z)). Thus we obtain the diagram below, that we call W 2

X ∩ Y ∩ Z //

��

Y ∩ Z

��

X ∩ Y
ww

ppppppppppp
//

��

Y
ww

ooooooooooooo

��

X ∩ Z // (X ∪ Y ) ∩ Z

X //xx

pppppppppppp
X ∪ Y

ww

Now taking Z = rd{W 1,W 2}, we obtain precisely the diagram which we wanted to show
was a cubic hyperresolution augmented over X ∪ Y ∪ Z ⊂ A3.

I only mentioned the following briefly in the seminar, but it can be useful.

Remark 0.18. We now want to consider the category of cubic hyperresolutions of schemes
(or of I-schemes). Let Hrc(Sch) denote the category of hyperresolutions of schemes (or
Hrc(I − Sch) denote the category of hyperresolutions of I-schemes). There is a (forgetful)
functor w from Hrc(Sch) back to schemes (or from Hrc(I − Sch) back to I-schemes) which
obtains the scheme (I-scheme) which the diagram is a hyperresolution of [GNPP88, I, 3.3].
One can also form HoHrc(Sch), the category obtained through localization by inverting all
morphisms f such that w(f) is an identity morphism on Sch. Let ΣI−Sch denote the set of
morphisms to be inverted. It turns out that w induces an equivalence of categories, How,
between HoHrc(Sch) and Sch [GNPP88, I. 3.8]. One can say even more: there exists a
section of How, that is to say, a functor

η : Sch→ HoHrc(Sch)

quasi-inverse to How satisfying the following properties

(i) η(S) = S if S is a smooth scheme
(ii) dim η(S)α ≤ dimS − |α|+ 1 for all α ∈ �r.

See [GNPP88, I, 3.9]

However, one can go even further:

Corollary 0.19. [GNPP88, I, 3.10] Let C be a category. Denote by

w∗ : HomCat((I − Sch),C )→ HomCat(Hrc(I − Sch),C )

the functor defined by
w∗(F ) = F ◦ w

Then w∗ induces an equivalence between the categories HomCat(I − Sch,C ) and the full sub-
category of HomCat(Hrc(I − Sch),C ) defined by the functors G : Hrc(I − Sch) → C which
satisfy the condition below

(DC) For all morphisms f of ΣI−Sch, G(f) is an isomorphism of the category C .

Now let us discuss sheaves on diagrams of schemes, as well as the related notions of push
forward and its right derived functors.
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Definition 0.20. [GNPP88, I, 5.3-5.4] Let X� be an I-scheme (or even an I-topological
space). We define a sheaf (or pre-sheaf) of abelian groups F � on X� to be the following data:

(i) A sheaf (pre-sheaf) F i of abelian groups over Xi, for all i ∈ Ob I, and
(ii) An Xu-morphism of sheaves F u : F i → (Xu)∗F

j for all morphisms u : i → j of I,
also required to be compatible in the obvious way.

Given a map of diagrams of schemes f� : X� → Y� one can construct a push-forward functor
for sheaves on X�.

Definition 0.21. [GNPP88, I, 5.5] Suppose X� is an I-scheme and Y� is a J-scheme and
that F � is a sheaf on X� and f� : X� → Y� a morphism of diagrams of schemes. We define
(f�)∗F

� in the following way. For each j ∈ Ob J we define

((f�)∗F
�)j = lim

←
(Yu)∗(fi∗F

i)

where the inverse limit traverses all pairs (i, u) where u : f(i)→ j is a morphism of Jop.

Remark 0.22. In many applications, J will simply be the category with one object {0}. In
that case one can merely think of the limit as traversing I.

Remark 0.23. One can also define a functor f ∗, show that it has a right adjoint and that
that adjoint is f∗ as defined above [GNPP88, I, 5.5]. We will need f ∗ so we define it now.

Definition 0.24. [GNPP88, I, Section 5] Let X� and Y� be diagrams of topological spaces
over I and J respectively, φ : I → J a functor, f� : X� → Y� a φ-morphism of topological
spaces. If G· is a sheaf over Y� with values in a complete category C , one denotes by f ∗� G

·

the sheaf over X� defined by
(f ∗� G

·)i = f ∗i (Gφ(i)),

for all i ∈ Ob I. One obtains in this way a functor

f ∗� : Sheaves(Y�,C )→ Sheaves(X�,C )

Given an I-scheme X�, one can define the category of abelian sheaves Ab on X� and
show it has enough injectives, and one can even define the derived category D+(X�,Ab) by
localizing bounded below complexes of sheaves on X� by the quasi-isomorphisms (those that
are quasi-isomorphisms on each i ∈ I). One can also show that (f�)∗ as defined above is left
exact so that it has a right derived functor R(f�)∗ [GNPP88, I, 5.8-5.9]. In fact, this functor
can be described while using fewer maps than we need to in the regular pushforward. First,
however, we need one definition which makes the notation more manageable.

Definition 0.25. [GNPP88, I, 1.5] Let I be a small category and K an I-category (that
is a functor K : Iop → Cat). Define tot(K) to be the category defined below: The objects
of tot(K) are pairs (i, x) such that i ∈ Ob I and x ∈ ObKi (recall Ki = K(i) ∈ Ob Cat),
and the morphisms (i, x) 7→ (j, y) are pairs (u, a) formed by a morphism u : i → j of I
and by a morphism a : x → Ku(y) of Ki ∈ Ob Cat. The composition (w, c) = (v, b) ◦ (u, a)
of two morphisms (u, a) : (i, x) → (j, y) and (v, b) : (j, y) → (k, z) of tot(K) is defined by
(w, c) = (v ◦ u,Ku(b) ◦ a).

Proposition 0.26. [GNPP88, I, 5.10-5.14] Suppose that J is a small category and that K is
small a J-category, define I� = tot(K�) as the category where the morphisms are induced by
both those of I and those of J . Let S� be an J-scheme and let X�� be an I�-scheme augmented
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over S� (that is, we have a map of diagrams of schemes a� : X�� → S�). Note for each
j ∈ Ob J we have Xj� the Kj-scheme (note Kj is a category). Further suppose that F �� is a
bounded below complex of abelian sheaves on X��. Then if the components of aj are denoted
by ajk : Xjk → Sj, k ∈ ObKj, one has

(Ra�∗F
��)j = R lim

←Kj
Rajk∗F

jk, j ∈ Ob J

Roughly speaking, if we can stratify a diagram X� over another diagram S� then we can
use that stratification to simplify the limit (I realize that the notation might suggest we have
done almost anything but simplify things).

We can now discuss cohomological descent.

Definition 0.27. Let K� be an I-object of Cat, π : tot(K�) → I the associated projection
functor. If X�� is a tot(K�)-topological space provided with an π-augmentation

a� : X�� → S�

over a I-topological space S�, we say that a�, or by abuse of notation that X�� is of cohomo-
logical descent over Si, if, for all abelian sheaves F · over S�, the morphism of adjunction

F · → Ra�∗a
−1
� F ·

is a quasi-isomorphism.

Remark 0.28. In [PS08], they define something to be of cohomological descent if it satisfies
essentially the same property for the constant sheaf Z�. I’m not sure if this is the same
condition or not. However, for computing singular cohomology, the weaker definition of
[PS08] is fine.

Proposition 0.29. With the notation of 0.27, a� : X�� → S� is of cohomological descent over
S� if and only if, for all i ∈ Ob I, the augmentation ai : Xi� → Si of the Ki-topological space
Xi� is of cohomological descent over Si.

The proof of this proposition is essentially Proposition 0.26.

Proposition 0.30. ([GNPP88, Proposition 6.8], [SGA4, 4.1.2]). Let

Y ′
i′ //

g

��

X ′

f
��

Y
i // X

be a cartesian square of morphisms of I-schemes. Suppose the following assumptions

(i) The morphisms i and i′ are closed immersions,
(ii) The morphism f is proper, and

(iii) The I-scheme Y contains the discriminant (base locus) of f , in other words, f induces
an isomorphism of X ′i − Y ′i over Xi − Yi for all i ∈ Ob I.

Under these conditions, if one sets

Z� = tot(Y Y ′
i′ //goo X ′ )

and one denotes by π : �1× I → I the functor of projection, then one has a π-augmentation
of diagrams of topological spaces Z� → X that is of cohomological descent over X�.
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In effect, according to Proposition 0.29, one can suppose that I is reduced to the category
1. Furthermore (by [GNPP88, Proposition 6.4]), it suffices to prove, for all abelian sheaves F
over X, the acyclicity of simple complex associated to the commutative spare of morphisms
of complexes of sheaves over X�

Rh∗h
∗F Rf∗f

∗Foo

i∗i
∗F

OO

Foo

OO

where h = i ◦ g = f ◦ i. However, one has exact sequences of sheaves

0→ j!j
∗F → F → i∗i

∗F → 0

0→ j′!j
′∗f ∗F → f ∗F → i′∗i

′∗f ∗F → 0

where j : X − Y → X and j′ : X ′ − Y ′ → X ′ denote morphisms of inclusion. Given that
f is proper, the morphism of adjunction defines a morphism of distinguished triangles of
D+(X,Ab)

J!j
∗F // F // i∗i

∗F
+1 //

Rf∗j
′
!j
′∗f ∗F // Rf∗f

∗F // Rh∗h
∗F

+1 //

In virtue of (iii), one has f ◦ j′ = j, from which on has an isomorphism

Rf∗j
′
!j
′∗f ∗F = j!j

∗F

in D+(X,Ab), and the proposition results from the following lemma, which is a variant of
the octahedral axiom.

Lemma 0.31. Let

F 01
f1

// F 11

F 00

g0

OO

f0
// F 10

g1

OO

be a commutative square of morphisms of bounded below complexes of an abelian category.
If one sets

f · = (f 0, f 1) : s(g0)→ s(g1)

and

g· = (g0, g1) : s(f 0)→ s(f 1)

the conditions below are equivalent

(i) f · is a quasi-isomorphism,
(ii) g· is a quasi-isomorphism,

(iii) the simple complex associated to the (�+
1 )O-complex F · , defined by the diagram above

is acyclic.
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Proof. The lemma results from the obvious isomorphism

s(g·) = s(F ·) = s(f ·)

because a morphism h of complexes is a quasi-isomorphism if and only if s(h) is acyclic. �

Theorem 0.32. [GNPP88, Theorem 6.9] Let S be an I-scheme. If X� → S is a cubic
hyperresolution of S, X� is of cohomological descent over S.

We now discuss simplicial resolutions and how to get one from a cubical hyperresolution.

Definition 0.33. A semi-simplicial space truncated at level k over X (in the language of
[PS08]) is a collection of topological spaces Xi, i = −1, . . . , k where we set X−1 = X, together
with maps εij : Xi → Xi−1 for 0 ≤ j ≤ i ≤ k, as pictured in the diagram below:

X X−1 X0
ε00oo X1

ε11
oo
ε10oo X2

ε22
oo

ε20oooo X3
ε33

oo oo
oo
ε30oo

satisfying the relations εij ◦ εi+1,j+1 = εij ◦ εi+1,j for all j < i.

Remark 0.34. A “semi-simplicial space truncated at level k over X” is also sometimes called
a simplicial space of level k over X. See [Ste85] or [Ste87].

We now explain how to construct a semi-simplical space from a cubical one.
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