
GENERALIZED DIVISORS AND REFLEXIVE SHEAVES

KARL SCHWEDE

1. Preliminary Commutative Algebra

We introduce the notions of depth and of when a local ring (or module over a local ring)
is “S2”. These notions are found in most books on commutative algebra, see for example
[Mat89, Section 16] or [Eis95, Section 18]. Another excellent book that is focussed on these
ideas is [BH93]. We won’t be focussing on the commutative algebra, but one should be
aware, at the very least, that this background exists. In particular, we won’t really use any
of the theory on Cohen-Macaulay rings. However, since one ought to build up the same
machinery in order to define S2, we include these definitions as well.

All rings will be assumed to be noetherian.

Definition 1.1. Let (R,m) be a local ring and let M be a finite R-module (which means
finitely generated). An element r ∈ R is said to be M-regular if rx 6= 0 for all x ∈M , x 6= 0
(in other words, r is not a zero divisor on M). A sequence of elements r1, . . . , rn ∈ R is said
to be M-regular if

(i) ri is a regular M/(r1, . . . , ri−1) element for all i ≥ 1 (in particular r1 is M -regular)
(ii) (r1, . . . , rn)M ( M (that is, the containment is proper).

Remark 1.2. If condition (i) is satisfied, but condition (ii) is not necessarily satisfied then
such a sequence is called weakly M-regular.

Remark 1.3. Notice that condition (ii) implies in a regular sequence, all ri ∈ m ∈ R.

Remark 1.4. One can (and often does) consider the notion of a regular sequence without the
hypothesis R is local or that M if finitely generated. However, in that case these notions
are not as well behaved (for example, whether or not a sequence is regular depends on the
order of the sequence without these hypotheses).

Definition 1.5. Let (R,m) be a local ring and suppose that M is a finite R-module. We
say that M has depth k (or in some books, the grade of m on M is k) if the maximal length
of an M -regular sequence is k.

We state a few basic properties of depth below. Please see any of the above references for
proofs.

Proposition 1.6. Let (R,m) be a local ring and suppose that M if a finite R-module. Then

(a) If we define a maximal M-regular sequence in the obvious way (it can’t be extended to
a longer M-regular sequence), then every maximal M-regular sequence has the same
length.

(b) Modules have a notion of dimension (dimM = dim(A/AnnRM)) and one has
depthM ≤ dimM . In particular, R is a finite R-module so we have depthR ≤
dimR.
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(c) If x is M-regular, then depthM/(xM) = depthM − 1 (here we can view M/(xM)
as either an R-module or an R/(x) module).

Remark 1.7. The ring (k[x, y, u, v]/((x, y) ∩ (u, v)))(x,y,u,v) viewed as a module over itself has

depth 1 and dimension 2. Geometrically, we just took two planes in A4 that intersect in a
single point, and took the stalk at that intersection point. It is not a bad exercise to check
this fact however.

Remark 1.8. Depth can be thought of as a different way to measure the dimension of a
module (or ring), which motivates the following definition. One should also note that just
like dimension, you can lose depth when you localize. Notice that if we are considering the
ring R = k[x, y](x,y) and we let M = R/(x), then M has depth 1 (you can mod-out by y
for example). However, if one localizes at p = (x), then Mp = Rp/p has depth 0 as an
Rp-module.

Definition 1.9. A finitely generated module M 6= 0 over a local ring (R,m) is said to be
Cohen-Macaulay if depthM = dimM . In particular, by viewing R as a module over itself,
we have a notion of what it means for R to be Cohen-Macaulay. If M is a finitely generated
module over a (not necessarily local) ring R, then we say that M is Cohen-Macaulay if Mm

is Cohen-Macaulay over Rm for all maximal m ⊆ R.

Remark 1.10. Being Cohen-Macaulay is preserved by localization, thusM is Cohen-Macaulay
if and only if Mp is Cohen-Macaulay over Rp for all prime p ⊆ R. A coherent sheaf is Cohen-
Macaulay if all its stalks are and of course a scheme is Cohen-Macaulay if its structure sheaf
is. Finally, a regular local ring is clearly Cohen-Macaulay as a module over itself.

Remark 1.11. A large amount of commutative algebra and algebraic geometry is done under
the assumption that the rings involved are Cohen-Macaulay. One key fact about them that
will come up later for us is that Cohen-Macaulay is the condition under which one can do
Serre duality on projective schemes without resorting to complicated constructions involving
the derived category.

We now define Serre’s conditions Sn, which essentially say that the module is Cohen-
Macaulay in “low” codimension (the codimension is determined by the n).

Definition 1.12. A module M satisfies Serre’s condition Sn if

depthMp ≥ min(n, dimRp)

for all p ∈ SpecR. Likewise a coherent sheaf is Sn if all its stalks are.

Remark 1.13. This is a highly non-standard definition of S2. The more standard approach
is to require that

depthMp ≥ min(n, dimMp).

However, since I am largely following an outline of Hartshorne where he uses this non-
standard definition, please keep this in mind. (Or simply imagine that the modules we study
satisfy dimMp = dimRp for all p ∈ SpecR, a fairly common situation).

We will be particularly interested in the case where a ring is S2 (viewed as a module over
itself). In particular, if we view R as a module over itself, this says that for primes p of
height ≤ 2 that Rp is Cohen-Macaulay, and for primes p of height > 2, Rp has depth at least
2.
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Remark 1.14. A very key property of S2 rings is the following. If R is S2, then every principal
ideal has no embedded primes (see [Mat89, Page 183] or [Mat80, Page 125]). It turns out
that normal rings are S2, which will be very helpful to us.

We also mention a link with sheaves (see [Har77, Chapter III, Exercise 3.5])

Proposition 1.15. Let X be a Noetherian scheme and let P ∈ X be a closed point. Then
the following are equivalent:

(i) depthOP ≥ 2
(ii) if U is any open neighborhood of P , then every section in Γ(U − P,OX) extends

uniquely to a section in Γ(U,OX).

Remark 1.16. If X is of finite type over a field, equidimensional (which means that every
irreducible component has the same dimension, or equivalently in this context, every closed
point a stalk of the same dimension) and has dimension ≥ 2, then X is S2 if and only if
condition (ii) above is satisfied.

We also state the following generalization of one direction. Again, some of the proofs
rely on exercises from Hartshorne we haven’t done yet. In some sense, the following is why
geometers care about S2 sheaves.

Theorem 1.17. [Har94, Proposition 1.11] Let X be a noetherian scheme suppose that F is
an S2 coherent sheaf on X. Let Y ⊂ X be a closed subset of codimension ≥ 2. Then the
restriction map Γ(X,F )→ Γ(X − Y,F ) is an isomorphism.

Proof. We first show that the restriction map is injective. Suppose not, then for some
section z ∈ Γ(X,F ), Supp z ∈ Y (see [Har77, Chapter II, Exercise 1.14] for the definition
of support). This is preserved after passing to an affine chart, so we consider an ring R and
an S2 module M as well as an element z ∈ M where we set I = AnnR z and we require
that I is an ideal of height at least two. Localizing at a minimal prime of I we may assume
that R is a local ring and that

√
AnnR z = m, the maximal ideal of R. This new R still has

dimension at least two, by construction and M has depth at least 2. By [Har77, Chapter
III, Exercise 3.4], this implies that Γm(M) = H0

m(M) = 0 which means z does not exist (see
[Har77, Chapter II, Exercise 5.6] for the definition of Γm(M)). Alternately one could use the
previous proposition if F = OX (which amounts to the same thing in this case). Regardless,
what we have used the is the fact the module is S1.

We now follow the proof of [Har94, Proposition 1.11]. To prove surjectivity, it is sufficient
to show that every section s ∈ Γ(X − Y,F ) extends to a global section of F . Since X is a
noetherian topological space, it is sufficient to show that s extends to Γ(X − Y ′,F ) where
Y ′ is some proper closed subset of Y . Let y be a generic point of an irreducible component
of Y . Let Xy = SpecOy. We abuse notation and let F denote the restriction of F to Xy.
Note that dimOy ≥ 2.

By some (long) exact sequence using local cohomology [Har77, Chapter III, Exercise 2.3(e)]
and again by [Har77, Chapter III, Exercise 3.4], we see that Γ(Xy,F ) ∼= Γ(Xy − {y},F ).
Now, s induces a section of Γ(Xy −{y},F ) which extends to a section s1 ∈ Γ(Xy,F ). This
is just an element of the stalk Fy (now undoing our abuse of notation identifying F with
the induced sheaf on Xy). Our goal now is to find a neighborhood where this element and s
agree and to use this to shrink Y as above.
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There is a an open neighborhood V of y such that s2 ∈ Γ(V,F ) which restricts to s1.
Note that for every point x ∈ Xy, the sections s and s2 agree by construction. Let t = s− s2

on the open set (X − Y ) ∩ V and let Z ⊂ (X − Y ) ∩ V be the support of t. Thus Z does
not meet Xy − {y} and so y is not contained in Z, the closure of Z inside V . Replacing V
by V ′ = V − Z, and letting s3 = s2|V ′ we now have V ′ a new neighborhood of y and the
sections s ∈ Γ(X − Y,F ) and s3 ∈ Γ(V ′,F ) which agree on the intersection. Thus since F
is a sheaf, we obtain a section s′ ∈ Γ((X − Y )∪ V ′,F ) which restricts to F . But note that
(X − Y ) ∪ V ′ is strictly larger than X − Y (since it contains y) and so we can let Y ′ be the
complement of (X − Y ) ∪ V ′ �

Corollary 1.18. Let X be a noetherian scheme suppose that F is an S2 coherent sheaf on
X. Let Y ⊂ X be a closed subset of codimension ≥ 2 and set U = X\Y . Then if i : U → X
is the natural inclusion, then the natural map F → i∗F |U is an isomorphism.

Proof. One can check it on affine charts since i∗F |U is quasi-coherent, and on those charts
we can apply the previous theorem. �

Normal schemes are related to S2 schemes in the following way (originally due to Serre,
as are many things).

Proposition 1.19. [Mat89, Theorem 23.8] A noetherian scheme is normal if and only if it
is S2 and it is R1 (R1 means that for every point P ∈ X such that dimOX,P = 1, we have
that OX,P is a regular local ring).

2. Torsion Free and Reflexive Sheaves on Integral Schemes

Remark 2.1. I don’t know much about the history reflexive modules and sheaves. Hartshorne
has in the past cited a book of Auslander and Bridger, [AB69]. He also cited Bourbaki’s
commutative algebra, [Bou98], and EGA I, [Gro60].

Throughout this section we always assume that X is quasi-projective over a field (or a
noetherian ring). When I say quasi-projective, please choose your favorite field (or noetherian
ring) and consider X as quasi-projective over that. This is for the following reason.

FACT: On a quasi-projective variety, every coherent sheaf F is a quotient of a locally free
sheaf.

We discussed this for projective schemes over a noetherian ring, see [Har77, Corollary 5.18].
We can generalize the same result to quasi-projective schemes as follows. Embed X in a
projective X. Then, using [Har77, Exercise 5.15], we can find a coherent sheaf F on X
that restricts back to F (this is a very useful exercise). We can then write F as a quotient
of locally free sheaves which obviously stay locally free when restricting to X. To prove
our main results, none of this is needed, but it makes the statements easier. Note that
any scheme is locally quasi-projective over a noetherian ring (itself) thus by making this
assumption, we can remove the “locally” hypothesis from many theorems.

Given a coherent sheaf F on any scheme X, there is the following (dualizing) operation:
F∨ = H omOX

(F ,OX). Furthermore there is a natural map from F to the double-dual,

F → (F∨)∨. If this map is an isomorphism, we say that F is reflexive (or more specifically
that it is OX-reflexive). (One can define what it means for a module over a ring to be
reflexive in a similar way). Note that if a sheaf is reflexive, it is also coherent (by definition).
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Remark 2.2. If you are unfamiliar with this sort of map, try writing it down first for modules.
That is, for a finite R-module M , you want a map

M → HomR(HomR(M,R), R).

Send m ∈M to the map that sends φ ∈ HomR(M,R) to φ(m) (what else could you do?). To
get this for schemes, just glue. In order to do this gluing, one has to check that this natural
double-duality map is compatible with localization. Note that once one has this (at least if
X is integral), one sees that this natural double-dual map is an isomorphism at the generic
point of X (where all these modules become modules over a field).

Notice first that any locally free sheaf is reflexive. But there are other reflexive sheaves
as well. If one is careful, one can check that (x, z) ∈ k[x, y, z]/(xy − z2) corresponds to a
reflexive ideal sheaf after taking Spec.

Remark 2.3. If one is unfamiliar with these notions for modules, the following exercise might
be helpful. Set R = k[x, y]. Which of the following R-modules are reflexive? If a module is
not reflexive, compute its double dual M∨∨.

(a) The ideal (x).
(b) The ideal (x, y).
(c) The module R/(x, y).
(d) The module R/(x).
(e) The ideal (x2, xy) = (x, y)2 ∩ (y).

There are a few basic facts about reflexive sheaves that should be mentioned. We now
limit ourselves to integral schemes which makes dealing with torsion much easier. One can
do analogues of the following in more general situations (say for reduced schemes), but the
statements become much more involved.

Lemma 2.4. Suppose that X is a noetherian integral scheme and suppose that F is a
coherent sheaf on X. Then F∨ is torsion free. (That is, if U ⊂ X is open and 0 6= r ∈
OX(U) and 0 6= z ∈ F∨(U), then rz 6= 0). In particular, a reflexive sheaf is torsion free.

Proof. First choose V ⊆ U affine such that z|V 6= 0. Note that r|V is also non-zero since we
are dealing with an integral scheme. But then it is enough to show that rz|V 6= 0. Thus we
may as well work in the affine case with M a finitely generated R-module with r ∈ R and
z ∈ HomR(M,R). Suppose that rz = 0, this means for every m ∈ M , r · z(m) = 0. But
since r 6= 0, this implies that z(m) = 0 for all m ∈M which is the same as z = 0. �

Note that a torsion-free sheaf is necessarily S1 (any element makes up a rather short regular
sequence).

Lemma 2.5. Suppose that X is a noetherian integral scheme and that F is a torsion free
coherent sheaf. Then the natural map α : F → F∨∨ is injective.

Proof. First note that the statement is true if F is zero so we assume that F 6= 0. The
statement is local, so it is harmless to assume that X = SpecR for some noetherian integral

domain R and that F = M̃ for some finitely generated module M . Suppose that the natural
map α : M → M∨∨ is not injective. Thus there is some 0 6= m ∈ M such that α(m) = 0.
Let L = FracR.
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Note that M ⊗R L is a non-zero finitely generated L-vector space. Now consider what
happens when we tensor α with L. Because M is finitely generated, we obtain

M ⊗R L→ HomR(HomR(M, R), R)⊗R L ∼= HomL(HomR(M, R)⊗R L, R⊗R L) ∼= HomL(HomL(M ⊗R L, L), L).

One can then check that this map is the natural map associated to double-dualizing a vector
space, which is an isomorphism (again, we’re asserting that the double duality morphism
localizes well). But then since M is torsion free, m⊗ 1 ∈M ⊗R L ∼= M(0) is non-zero, which
implies that α(m) cannot be zero. �

We can generalize the previous lemmas to relate torsion free sheaves to S1 sheaves.

Proposition 2.6. [Har94, Lemma 1.5] Let X be a quasi-projective integral scheme and let
F be a coherent sheaf on X. The following are equivalent:

(a) F is torsion free.
(b) The natural map α : F → F∨∨ is injective.
(c) F is S1.
(d) F is a subsheaf of a coherent locally free sheaf.

Proof. Lemma 2.4 implies if (b) holds, then so does (a). Lemma 2.5 implies the converse.
Of course if d holds, then so does (a). Of course if F is torsion free, then it is clearly S1

(you just need a non-zero divisor at every local ring). Conversely, suppose F is S1 and
consider the kernel K of α. Since X is integral, we see α is injective generically, and thus K
is supported in codimension at least 1. If one considers a minimal irreducible component of
the support of K, then we see that K at the corresponding stalk has depth zero. But since
K injects into F this contradicts the assumption that F is S1.

Finally, we show that (b) implies (d), (as (d) obviously implies (a)). Write F∨ as a
quotient of a locally free sheaf L (which we can do since X is quasi-projective). Then apply
H omOX

( ,OX). This gives F∨∨ (and thus F ) as a subsheaf of L ∨ (which is still locally

free). �

Lemma 2.7. [Har80, Proposition 1.1] A coherent sheaf F on a quasi-projective integral
scheme X is reflexive if and only if it can be included in an exact sequence

0→ F → E → G → 0

where E is locally free and G is torsion free.

Proof. [Har80, Proposition 1.1] Suppose that F is reflexive. Then we can write an exact
sequence

L1 → L0 → F∨ → 0,

with L0 and L1 locally free (since X is quasi-projective).
By applying the left exact contravariant functor H omOX

( ,OX) we get another exact
sequence

0→ F → L ∨
0 → L ∨

1

If we set G to be the cokernel of F → L ∨
0 , then G is isomorphic to a subsheaf of L ∨

1 which
is locally free. Thus G is torsion free.

Conversely, suppose that there is an exact sequence

0→ F → E → G → 0
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with E locally free and G torsion free. But then F is torsion free so the natural map
F → F∨∨ is injective. On the other hand, E is locally free, and thus reflexive. Thus we
have a map F∨∨ → E . At the generic point of X this is injective (since there it is the same
as F → E ). But then it is easy to see that F∨∨ → E is injective as well since F∨∨ is
torsion free. Therefore the quotient F∨∨/F is a subsheaf of G . It is also torsion since it is
zero at the generic point of X. But this is impossible since G is torsion free. �

Theorem 2.8. If F is a coherent sheaf on a noetherian integral scheme X, then F∨ is
reflexive.

Proof. The statement is local, so we may assume that X is affine. Thus we can write an
exact sequence

L1 → L0 → F → 0

with the Li locally free. Dualizing this as before gives us an exact sequence

0→ F∨ → L ∨
0 → L ∨

1

If one lets G be the cokernel of F∨ → L ∨
0 we again see that G is torsion free (since it is a

subsheaf of L ∨
1 ). Which is exactly the condition required by the previous lemma in order

to prove that F∨ is reflexive. �

Corollary 2.9. Suppose that X is a noetherian integral scheme and that F is coherent and
G is reflexive, then H omOX

(F ,G ) is reflexive.

Proof. Since G is reflexive, we can write

H omOX
(F ,G ) ∼= H omOX

(F ,H omOX
(G ∨,OX)) ∼= H omOX

(F ⊗OX
G ∨,OX)

where the second isomorphism is simply the sheafy-version of Hom/tensor adjointness. �

We now link this notion of reflexive sheaves with the notion of S2 sheaves.

Theorem 2.10. [Har94, Theorem 1.9] Suppose that X is a normal integral (not necessarily
quasi-projective) noetherian scheme and that F is a coherent sheaf on X. Then F is S2 if
and only if F is reflexive.

Proof. [Har94, Theorem 1.9] The statement is local, so we may as well assume that X is
quasi-projective. First suppose that F is reflexive. Then there is an exact sequence

0→ F → L → N → 0

with L locally free and N torsion free. Thus L satisfies S2 (this is because X is S2 since
X is normal). Furthermore, N satisfies S1 since it is torsion free. We choose a point P ∈ X
and look at the exact sequence on the stalks,

0→ FP → LP → NP → 0.

Note if dimOX,P = 1, then FP is a submodule of a free module, so it is S1 (which is all we
would need to check at such a stalk). If dimOX,P ≥ 2, then depth LP ≥ 2 and depth NP ≥ 1.
Then by considering the long exact sequence of local cohomology (see [Har77, Chapter III,
Exercise 3.3]) and [Har77, Chapter III, Exercise 3.4], depth FP ≥ 2.

Conversely, suppose F satisfies S2, then its also S1. Thus α : F → F∨∨ is injective so
let C be the cokernel. Thus we have an exact sequence

0→ F → F∨∨ → C → 0.
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If C 6= 0, let P be a generic point of an irreducible component of the support of C and
consider again the map on stalks. There are two possibilities again.

First if dimOX,P = 1, then OX,P is normal, and so it is a discrete valuation ring and in
particular a PID. But then FP is free (since it is torsion free) and so FP is already reflexive
and αP is an isomorphism and CP = 0.

Now suppose that dimOX,P ≥ 2 and consider the sequence

0→ FP → F∨∨
P → CP → 0.

Here FP has depth ≥ 2 as does F∨∨
P (since it is reflexive). Furthermore, CP has depth zero

since it is supported at P . If one takes the local cohomology sequence again (at the local
ring OX,P , see [Har77, Chapter III, Exercise 3.3]) we see that this is impossible. �

Corollary 2.11. Let X be a integral, normal (not necessarily quasi-projective) scheme and
suppose that F is a reflexive sheaf on X (defined as above). Let Y ⊂ X be a closed subset
of codimension ≥ 2 and set U = X\Y . Then if i : U → X is the natural inclusion, then the
natural map F → i∗F |U is an isomorphism.

One nice property of reflexive sheaves is that given a finite morphism of normal integral
schemes, then the pushforward of a reflexive sheaf is reflexive, [Har80].

We also have the following fact related, which we will find useful.

Proposition 2.12. Suppose that F is a reflexive sheaf on U ⊆ X (where X is as above)
where X − U is codimension two. Let us denote by i : U → X the inclusion. Then i∗F is a
reflexive sheaf on X

Proof. Certainly (i∗F )∨∨ is reflexive, so the natural map

(i∗F )∨∨ → i∗((i∗F )∨∨|U)

is an isomorphism However, (i∗F )∨∨|U is clearly the same as F , since F was reflexive on
U . Therefore (i∗F )∨∨ ∼= i∗F and we are done. �

3. Divisors and Reflexive Sheaves

I don’t know of a good reference for what follows, although certainly the basics have
been outlined in various places, see for example [Kc92, Chapter 16] or [Fer01]. Of course,
the works of Hartshorne I have previously cited ([Har80], [Har94] and [Har07]) also have
a certain amount of this worked out but not necessarily phrased in this language and also
worked out in greater generality. Also see [Bar77].

Let X be a normal integral separated noetherian scheme of finite type over a field (or,
instead of the finite type condition, you may assume that there is a cover of X by affine
charts whose corresponding rings are excellent, see [Mat80]). By a Weil divisor on X, we
mean a formal sum of integral codimension 1 subschemes (prime divisors). Just like in the
regular case, each prime divisor D corresponds to some discrete valuation vD of the fraction
field of X (although the reverse direction is not true). This is because the stalk at the generic
point of a prime divisor is still a regular ring (since normal rings are R1). Also like before,
we can form Div(X), the group of divisors on X.

Remark 3.1. One key fact that we observe is that since X is normal it is R1. This also
implies that, since the non-regular locus is closed, that the non-regular locus is a closed
subset of codimension 2 (again using the finite type over a field condition, or the “excellent”

8



condition). We will often denote its complement by U and then note that the results of the
previous sections apply in terms of extending S2 sheaves on U to X via the pushforward
map. Furthermore, just as before, Div(X) ∼= Div(U).

Definition 3.2. Choose f ∈ K(X), f 6= 0. We define the principal divisor div(f) as in the
regular case: div(f) = ΣivDi

(f)Di. Likewise, we say that two Weil divisors D1 and D2 are
linearly equivalent, if D1 −D2 is principal.

Definition 3.3. Given a divisor D, we define OX(D) be the sheaf associated to the following
rule:

Γ(V,OX(D)) = {f ∈ K(X)| div(f)|V +D|V ≥ 0}

Proposition 3.4. Suppose that D is a prime divisor, then OX(−D) = ID and furthermore,
if D is any divisor, then OX(D) is reflexive.

Proof. We first show the equality. The object defined above is clearly a sheaf. We will prove
the equality of the sheaves in the setting where U is affine. Then Γ(U,OX(D)) is just the
functions in OX which vanish to order at least 1 along D, in other words the ideal of D.

We now want to show that this sheaf is reflexive (or equivalently, that it is S2). First notice
that clearly if U is the regular locus of X, then Γ(V ∩U,OX(D)) ∼= Γ(V,OX(D) for any open
set V . This is because V ∩U = U\{non-regular locus}, the non-regular locus is codimension
2, and the sections of OX(D) obviously do not change when removing a codimension 2
subset. This implies that the natural map OX(D) → i∗OX(D)|U is an isomorphism, but
then we notice that OX(D)|U is reflexive (since it is invertible) and thus, by corollary 2.11,
OX(D) is also reflexive.

Alternately, if one wants to show (directly) that it is S2 , then the statement easily from
[Har77, Chapter III, Exercise 3.5] by looking at various stalks, taking the Spec of the corre-
sponding and asking whether one can extend the sections from the punctured spectrum. �

We prove some other simple facts about divisors and reflexive sheaves below.

Proposition 3.5. [Har80, Proposition 1.9] Every rank one reflexive sheaf F on a regular
scheme X is invertible.

I won’t prove this but I will describe a sketch of a proof. One first shows that there exists
a closed set Z of codimension 2 such that F |X\Z is free. On the other hand, since X is
regular, one can show that Pic(X) ∼= Pic(X\Z). (Here Pic(X) is defined to be the group of
isomorphism classes of invertible sheaves on X).

Proposition 3.6. Every rank one reflexive sheaf F on a normal scheme X embeds as a
subsheaf of K (X).

Proof. Let Z denote the non-regular locus of X, which by assumption is codimension 2 since
X is normal. Set U = X\Z and let i : U → X be the inclusion, then F |U is invertible. On
the other hand, there is a map F → i∗F |U and we have a diagram

F

��

K (X)

��
i∗F |U // i∗K (X)|U
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Since F is reflexive, the first vertical arrow is an isomorphism. Since K (X) is just a constant
sheaf on an irreducible topological space, the second vertical arrow is also an isomorphism.

�

Proposition 3.7. Any reflexive rank 1 subsheaf of K (X) is OX(D) for some (uniquely
determined) divisor D.

Proof. Let U be the regular locus of X. We can consider the following commutative diagram:

F //

��

K (X)

��
i∗F |U // i∗K (X)|U

The fact that this diagram is commutative is the same as saying that the map M → i∗M |U
is natural (I’ll leave this as an exercise). As before, we see that both vertical arrows are
isomorphisms. Furthermore, F |U corresponds to divisor D on U and so F |U = OU(D).
If we extend D to X, we obtain some divisor D′ on X. But then OX(D′) ∼= i∗F |U ∼= F
since they agree on U , and the inclusion into K (X) is clearly the same as the one defined
above. �

In fact, just as before, there is a bijective correspondence between rank 1 reflexive sub-
sheaves of K (X) and divisors D on X. Even more, we can characterize the divisor class
group (Div(X) modulu principal divisors) using reflexive sheaves (see below).

Definition 3.8. We call a Weil divisor D Cartier if OX(D) is an invertible sheaf.

Proposition 3.9. Let f ∈ K(X) be non-zero where X is as above. Then div(f) is a Cartier
divisor.

Proof. We know that on the regular locus U ⊆ X, OU(div(f)|U) = 1
f
OU , but we also note

that 1
f
OX is reflexive (since abstractly it is isomorphic to OX) but likewise, so is OX(div(f)).

So it is easy to see that they are the same subsheaf of K (X) (one can use pushforward tricks
to obtain a map, or one explicitly write down a map between them which is an isomorphism
on U). �

Note the following observation.

Lemma 3.10. If D is a Weil divisor and E is a Cartier divisor, then OX(D + E) ∼=
OX(D)⊗OX(E)

Proof. The statement is local, and OX(E) is locally free of rank one. �

We can generalize it to a specific case as follows:

Proposition 3.11. Suppose that D1 and D2 are two Weil divisors, then D1 and D2 are
linearly equivalent if and only if OX(D1) ∼= OX(D2) (abstractly).

Proof. Certainly if D1 and D2 are linearly equivalent, then OX(D1) ∼= OX(D2 + div(f)) for
some non-zero f ∈ K(X). But then we are done by the previous lemma and proposition.

Conversely if OX(D1) ∼= OX(D2), then on the regular locus U ⊆ X, we can find an element
f ∈ K(X) such that (D1−D2)|U = div(f)|U . But then this extends to the non-regular locus
as well. �
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As before, we define a Weil divisor D = ΣiaiDi to be effective, if ai ≥ 0.
Note that ifD is effective, thenOX ⊂ OX(D) (inside K (X)) and conversely. Furthermore,

given a rank one reflexive sheaf F , an injective (equivalently non-zero) map

OX → F

uniquely determines F as a subsheaf of K (X). One way to see this is to note that one
obtains such an inclusion on the regular locus U ⊆ X, which we can then pushforward onto
all of X as before. Therefore, just as we discussed before, the global sections of F determine
effective divisors D such that F ∼= OX(D) (in other words, they determine to effective
divisors D in the linear equivalence class of F ).

One thing to be careful of. Even though every global section makes F into a subsheaf of
K (X), there can be two distinct global sections which turn F into the same subsheaf (just
as (x) and (−2x) are the same ideal inside C[x]). These facts are summarized (and expanded
upon) in the proposition below (compare with [Har77, Chapter II, Proposition 7.7]

Proposition 3.12. Suppose that X is as above and that F is a rank 1 reflexive sheaf on X.

(a) To every non-zero global section s ∈ Γ(X,F ), we can associate an effective divisor
D on X.

(b) For every effective divisor D such that OX(D) ∼= F , there is a section s ∈ Γ(X,F )
such that s corresponds to D.

(c) Two non-zero global sections s1, s2 determine the same divisor if and only if there is
a unit u in Γ(X,OX) such that s1 = us2.

Proof. To prove (a), we give a different argument than the on in the paragraph above. Note
that since F is torsion free and rank 1, we have F ⊗OX

K (X) ∼= K (X) (just as in the

locally free case). Therefore we have a commutative diagram.

OX //

��

F

β
��

K (X)
φ // K (X)

Note that φ is an isomorphism, and so we embed F into K (X) via φ−1 ◦β. This embedding
has an associated divisor by 3.7.

To prove (b), simply take the image of 1 in the natural map Γ(X,OX)→ Γ(X,OX(D)) ∼=
F and then use the above.

Finally, to prove (c), suppose that s1 and s2 are two global sections of F which determine
the same divisor (in other words, which determine the same subsheaf of K (X)). This gives
us two embeddings βi : F → K (X) which have the same image. The two sections si each
have image to 1 ∈ K(X) in the embedding βi. Let u be 1

β1(s2)
(thus u is the reciprocal of

the β1-image of s2). It then follows that (×u) ◦ β1 : F → K (X) is an embedding of F into
K (X) that sends s2 to 1 (here ×u simply means the map of sheaves induced by multiplying
by u), and thus it must be β2. Therefore we see that uβ1(F ) = (×u)(β1(F )) must equal
β2(F ) = β1(F ).

Now consider an affine open cover {Vi} of U = X\non-regular locus of X where F |Vi
is

free. Thus we still see that uΓ(Vi, β1(F )) = Γ(Vi, β1(F )). But this implies that u is a unit
in Γ(Vi,OX) since abstractly, Γ(Vi, β1(F )) ∼= Γ(Vi,OX). Therefore, u can also be viewed
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as a unit in Γ(U,OX). But X is normal and so in particular X is S2 , which implies that
Γ(U,OX) ∼= Γ(X,OX) and we see that u is a unit (and particularly an element) in Γ(X,OX)
as well (since all the restriction maps on OX are injective and we can identify any section
with a unique element of K(X)). Finally we note that β1(us2) = uβ1(s2) = 1 = β1(s1), but
β1 is injective and the proof is complete.

The converse of (c) is trivial since a unit clearly restricts to units in other section rings. �

Finally we discuss adding divisors and the corresponding tensor operations on sheaves.

Proposition 3.13. Let D1 and D2 be two divisors on X (where X is as above). Then we
have the following facts:

(a) OX(D1 +D2) ∼= (OX(D1)⊗OX(D2))
∨∨

(b) OX(−D1) ∼= H omOX
(OX(D1),OX)

(c) OX(D1 −D2) ∼= H omOX
(OX(D2),OX(D1)) ∼= (OX(D1)⊗OX(−D2))

∨∨

Proof. These facts hold on the regular locus U . Simply pushforward. �

Thus one can turn the set of (isomorphism classes of) rank 1 reflexive sheaves into a group
as follows. Two add two sheaves, simply tensor them together and then double-dualize
(apply ∨ twice). To invert a sheaf, simply dualize. OX is the identity. This group is clearly
isomorphic to the divisor class group by the previous results.

References

[AB69] M. Auslander and M. Bridger: Stable module theory, Memoirs of the American Mathematical
Society, No. 94, American Mathematical Society, Providence, R.I., 1969. MR0269685 (42 #4580)

[Bar77] W. Barth: Some properties of stable rank-2 vector bundles on Pn, Math. Ann. 226 (1977), no. 2,
125–150. MR0429896 (55 #2905)

[Bou98] N. Bourbaki: Commutative algebra. Chapters 1–7, Elements of Mathematics (Berlin), Springer-
Verlag, Berlin, 1998, Translated from the French, Reprint of the 1989 English translation. MR1727221

(2001g:13001)

[BH93] W. Bruns and J. Herzog: Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics,
vol. 39, Cambridge University Press, Cambridge, 1993. MR1251956 (95h:13020)

[Eis95] D. Eisenbud: Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag,
New York, 1995, With a view toward algebraic geometry. MR1322960 (97a:13001)

[Fer01] R. Ferraro: Weil divisors on rational normal scrolls, Geometric and combinatorial aspects of
commutative algebra (Messina, 1999), Lecture Notes in Pure and Appl. Math., vol. 217, Dekker,
New York, 2001, pp. 183–197. MR1824228 (2002a:14005)
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