
EXTRA CREDIT #1

MATH 217 – SECTION 4

The following will introduce you to the language of partitions of sets, and how they relate to
what we’ve been doing in class recently. Later in the quarter, around chapter 4, we will build on
this extra credit problem. Each question on this assignment is worth up to 2 points added to your
homework score.

We begin with a definition of a partition. Let S be a set (such as the real numbers R, real
n-space Rn, the set of integers Z, or even just the numbers {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}).
Definition 0.1. A partition of S is a collection of subsets {Si} of S, satisfying both of the following
properties.

(i) Every element x ∈ S (read x in S) is an element of some Si.
(ii) No two distinct Si and Sj have any elements in common.

Remark 0.2. The various Si that make up a partition are called partition subsets.

We now do several examples.
If S is the set of integer Z, then one partition of S is to make S1 be the even integers and S2 be

the odd integers. Every integer is either even or odd (so every integer is either in S1 or S2) and
thus condition (i) is satisfied. Likewise, no integer can be simultaneously both even and both odd
(so no integer is in both S1 and S2) and thus condition (ii) is satisfied.

If S is the set of integers {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} then one possible partition is
• S1 = {1}
• S2 = {2, 3}
• S3 = {4}
• S4 = {5, 6, 7}
• S5 = {8, 9}
• S6 = {10}

obviously there are many other ways to “partition” this set of numbers as well.
Some partitions can have infinitely many subsets. For example if S = R2, the one can consider

all the subsets

Sλ = {
[

x
λ

]
∈ R2} = {all pairs of numbers in R2 where the second entry is λ}

Every element in R2 has some second entry, so every element in R2 is in Sλ for some λ. This takes
care of partition condition (i). On the other hand, Sλ and Sδ have no terms in common if λ and δ
are different, this takes care of partition condition (ii). Note in this example, every partition subset
has infinitely many elements and there are infinitely many distrinct partition subsets. But it’s still
a partition.

Exercise 0.3. Find a partition of S = Z that has 4 partition subsets S1, S2, S3 and S4, such that
each Si has infinitely many elements.

An easy way to create partitions is to start with a function and partition the domain by the
various solution sets (sometimes this is also called the level sets).
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Proposition 0.4. If f : Rn → Rm is a function (not necessarily a linear transformation, but those
work too), then for each b ∈ Rm (read b in Rm) such that f(x) = b has a solution, we consider
the set of all solutions x to the equation f(x) = b. This is a subset of the domain, Rn, that we will
denote by Sb. The collection of all such Sb forms a partition of the domain Rn.

Before trying the proof, lets do an example. Specifically, let f : R → R be the function that
sends x to x2 (that is, f(x) = x2). This function gives us a partition on the domain, R. The sets
of the partition are Sλ for real numbers λ where λ ≥ 0. We need λ to be bigger than zero since the
square of a real number is never negative. Let us describe some of these sets,

• S0 = {0}, the only element that becomes zero after squaring is zero.
• S1 = {−1, 1}, both −1 and 1 become 1 after squaring.
• S4 = {−2, 2}, both −2 and 2 become 4 after squaring.
• Sa = {−√a,

√
a}, both −√a and

√
a become a after squaring.

There are obviously an infinite number of distinct sets in this partition.
Let’s let you do another example.

Exercise 0.5. Consider the function T : R2 → R2 defined as the matrix transformation

T (x) =
[

0 0
0 1

]
x

Explicitly describe the partition of R2 associated to this function.

Exercise 0.6. Prove “Proposition 0.4”. Hint: Remember, there are two properties to check, make
sure to take care of both of them.

When working with linear (matrix) transformations, the partition of the domain associated to
the matrix transformation is quite well behaved. In particular, every subset that forms the partition
looks like every other (just translated around a bit). Let’s make this precise.

Theorem 0.7. Suppose that T (x) = Ax is a linear transformation from Rn to Rm. Consider the
partition subset S0 (that is, all solutions of the equation T (x) = 0). Every other partition subset
Sb is equal to p + S0 for some choice of vector p ∈ Rn. Another way to say this is that Sb is just
S0 translated by some vector p ∈ Rn.

Remark 0.8. When I say the set p + S0, I mean the set of all vectors that can be written as a sum
p + v where v is an element of S0.

The sets p + S0 (for various choices of p that make up the partition of of Rn) are sometimes
called the cosets.

Exercise 0.9. Explain why p is always an element of the set p + S0.

Exercise 0.10. Prove theorem 0.7.

Note that two different choices of p above can give the same particular partition subset. For
example, in the exercise 0.5 above, [

2
3

]
+ S0 =

[ −7
3

]
+ S0

Exercise 0.11. Prove that p + S0 = q + S0 if and only if p− q is an element of S0.


