PRACTICE FOR EXAM +#1

1. Write down the Taylor series for the following functions centered at a.
(a) f(z) = @ centered at a = 0.
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Note the uniqueness of power series (see the last page of problems) implies that this must
be the Taylor series.

(b) g(x) = sin(nx) centered at a = 1.
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(c) h(z) =

) — centered at a = 0.
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(d) f(x) = 23 centered at a = 1.
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(e) r(z) = ;% centered at a = 0.

Note that 2r(4z) = 7= = 7= =1+ 2 + 2% +2* +.... Therefore
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2. Determine which of the following series are convergent. Use the comparison tests, ratio
test, integral test, and Leibnez’s theorem.

e’ —1)"
(a) oo, 5

Converges. This follows immediately from Leibnez’s theorem since

1
n—2

is a decreasing
sequence of positive numbers which converges to zero.

(b) S e

Converges. To see this it is sufficient to show that the partial sum >~ W converges.

But then we apply the comparison test with the series Y ° ¢ 5= (note that In(n) > 2 for
n>9).

(e) X0 T

Diverges. We use the ratio test:
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As n — oo this goes to % > % = 1 which shows it diverges by the ratio test.

(d) 205 oo

Converges, the series is exactly the same as > ,(—1)"+ which converges by Leibnez’s
theorem.

(e) ol o

Converges, use the comparison test. Note n(Ln'.) < ;—,’L and the series of the latter converges
by work in previous assignments.



3. Show that the following sequences {a,} are convergent or non-convergent.

(a) a, = /In(n+1).

Non-convergent, in fact the sequence is not even bounded. Fix K > 0. Then set N = [e*].
Note that for n > N, a, > ay = \/In([e£*] +1) > /In(e£?) = VK2 = K.

(b) Set a; = 0 and as = 3. In general, for n > 3, use the recursive definition a, =
(QCLnfl + an72>/3.

Convergent, we will in fact show that the sequence is Cauchy. First consider

1
lani1 — an| = [(2a, + an_1)/3 — an| = =|an — an_1]-

3

%nillag —ay| = %nil(S) = %niQ. Choose

Therefore in general we know that |a,.1 — a,| =
€ > 0 and choose N > 0 such that %N_Z < e. Suppose that n,m > N. Notice that a, and
lN_Q

anp are in between ay and ayy1 by construction, so that |a, —am| < |axy —an41| = 3 <e
as desired.

(c) Let f : R — R be a bounded non-decreasing function. Define a; = f(0) and define
a, = f(an_1) recursively.

Convergent, but we must analyze several cases.

Case 1 a; = 0. In this case as = 0, ag = 0, etc... So that a,, is a constant and thus convergent
sequence.

Case 2 a; > 0. In this case ag = f(a1) > f(0) = a;. And in general, by induction (assuming
a, > a,_1), we know that a,y1 = f(a,) > f(a,—1) = a,. Therefore a, is a non-
decreasing sequence of numbers which is bounded above. It therefore converges.

Case 3 a; < 0. In this case, as = f(a1) < f(0) = a;. And in general, by induction
(assuming a,, < a,_1), we know that a,.1 = f(a,) > f(a,_1) = a,. Therefore a, is a
non-increasing sequence of numbers which is bounded below. It therefore converges.

(d) Let {b,} — b be a convergent sequence and suppose f : R — R is a continuous function.

Define a,, = f(by).

Convergent, we will show directly that it converges to f(b). Choose € > 0. Because f
is continuous, there exists § bigger than zero such that if |z — b| < 0 then |f(x) — f(b)] < e.
Because {b,} converges to b there exists N > 0 such that if n > N then |b, — b] < . Then
notice that if n > N, we know that |b, — b| < ¢ so that |f(b,) — f(b)| < e as desired.

(e) Let b, denote the number of prime numbers less than or equal to n (for example, bg = 3,

because 2, 3,5 are prime and all are less than or equal to 6). Then define a, = > -, i

It diverges by the comparison test since bi > % (ie, there are more integers less than

n than prime integers less than n).



4. Give a direct e-N proof of the following fact without looking it up in the book:
Suppose that f : R — R is a continuous function and that {a,} is a sequence which con-
verges to a. Show that {f(a,)} converges to f(a).

This was already given in 3(d).

5. Let f, : A — R be a sequence of functions. Show that the infinite series of functions
> re i fr converges uniformly on A if and only if for every e > 0, there exists an integer
N > 0 such for any pair of integers m and n satisfying m > n > N, then

| Y @)l <e

k=n+1
for all z € A.

The series > -, fr converges if and only if the sequence of partial sums s, = Y ,_, fx
converges if and only if the sequence of partial sums {s,} is Cauchy. But the sequence of
partial sums is Cauchy if and only for every € > 0 there exists an integer N > 0 such that
if m,n > N, then [s, — s,,| < e. Now, if m > n, then [s, — sp| = | >, fe(z)]. On the
other hand, if n > m, we can reverse the roles of m and n and get the same conclusion.

6. Suppose that f(z) = > 7 a,z" = Y 2 bya”™ for all z € [—c¢,¢] for some ¢ > 0 (in
particular, both Y > - a,c” and >~ b,c" converge). Show that a, = b, for all n.

Note that f is thus differentiable (and its derivatives themselves are differentiable etc) for
x € (—¢,c) based on a Theorem we proved in class (and in the book). But notice that
f™(0) = nla,, = n!b, and so we conclude that a, = b, as desired.



