HOMEWORK #9

DUE FRIDAY APRIL 16TH

- (1) Determine whether the following series converges and whether it converges absolutely. (a) $\sum_{n=1}^{\infty} \frac{(1-i)^n}{n!}$ (b) $\sum_{n=1}^{\infty} (1/3 + 2/3i)^n$
- (2) Use the ratio test to find the radius of convergence of the following power series. Justify your answer!

(a)
$$\sum_{n=1}^{\infty} \frac{z^n}{n^3}$$

(b)
$$\sum_{n=1}^{\infty} z^{2n}$$

- (3) Suppose that $\{a_n\}$ is a sequence of complex numbers converging to L. Further suppose that $f: \mathbb{C} \to \mathbb{C}$ is continuous. Show that the sequence $\{f(a_n)\}$ convergens to f(L).
- (4) Show that every complex number z_0 such that $|z_0| = 1$ can be written as e^{ir} for some real number $r \in \mathbb{R}$.
- (5) Assume that $e^z \cdot e^w = e^{z+w}$ for all complex numbers z and w (you need not prove it, but it is true). Prove that the function $f : \mathbb{C} \to \mathbb{C}$ defined by $f(z) = e^z = \sum_{n=1}^{\infty} \frac{z^n}{n!}$ is *NOT* injective. What does this say about finding a natural log function on \mathbb{C} ? Furthermore, show that the image of f is equal to $\mathbb{C} \setminus 0$.
- (6) Suppose that $\{a_n\}$ is a convergent sequence of complex numbers. Prove that the sequence is bounded. In other words, show that there exists a real number M > 0such that $|a_n| \leq M$ for every n.
- (7) A sequence of complex numbers $\{a_n\}$ is called a *Cauchy sequence* if for every $\varepsilon > 0$, there exists a N > 0 such that if m, n > N, then $|a_m - a_n| < \varepsilon$. Show that a sequence of complex numbers is convergent if and only if it is Cauchy.
- (8) Use the Cauchy Riemann equations to show that the following functions are not differentiable.
 - (a) f(z) = f(x + iy) = 2y ix.
 - (b) $g(z) = g(x + iy) = z^2 ix$.
- (9) You will be given a function u(z) = u(x+iy) below. Find a function v(z) = v(x+iy)such that f(z) = u(z) + iv(z) satisfies the Cauchy Riemann equations for all $z \in \mathbb{C}$. Alternately, explain why it can't be done.
 - (a) u(x+iy) = x+y.
 - (b) $u(x + iy) = x^2$.
 - (c) $u(x + iy) = e^x$.
- (10) Prove that a non-constant, complex differentiable function $f: \mathbb{C} \to \mathbb{C}$ cannot only output real numbers.