HOMEWORK #6

DUE MONDAY MARCH 8TH

- (1) Write down matrix representations of the following linear transformations. Also explain as well as you can what this linear transformation does geometrically. Fix an orthonormal basis \mathbf{u}, \mathbf{v} for \mathbb{R}^2 and an orthonormal basis $\mathbf{x}, \mathbf{y}, \mathbf{z}$ for \mathbb{R}^3 .
 - (a) The map $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined in the following way. $T(\mathbf{u}) = \mathbf{v}$ and $T(\mathbf{v}) = 2\mathbf{v}$.
 - (b) The map $T: \mathbb{R}^2 \to \mathbb{R}^1$ defined in the following way. $T(\mathbf{u}) = 1$ and $T(\mathbf{v}) = -1$.
 - (c) The map $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined in the following way. $T(\mathbf{u}) = \mathbf{0}$ and $T(\mathbf{v}) = \mathbf{x}$.
 - (d) The map $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined in the following way. $T(\mathbf{x}) = \mathbf{v}$ and $T(\mathbf{y}) = \mathbf{u} + 2\mathbf{v}$ and $T(\mathbf{z}) = 2\mathbf{u} - \mathbf{v}$.
- (2) Fix a basis \mathbf{u}, \mathbf{v} for \mathbb{R}^2 and a basis $\mathbf{x}, \mathbf{y}, \mathbf{z}$ for \mathbb{R}^3 . In the following problem you will be given a linear tranformation T represented by a matrix and you will also be given a vector w. Compute $T(\mathbf{w})$ and write your answer as both a column vector and as a linear combination of the appropriate basis vectors.

 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^2$ is represented by $\begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. (b) $T: \mathbb{R}^2 \to \mathbb{R}^2$ is represented by $\begin{bmatrix} K & 0 \\ 0 & K \end{bmatrix}$ (here K is a constant real number), and $\mathbf{w} = \begin{bmatrix} a \\ b \end{bmatrix}$.

 - (c) $T: \mathbb{R}^2 \to \mathbb{R}^3$ is represented by $\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$, and $\mathbf{w} = \mathbf{u}$. (d) $T: \mathbb{R}^3 \to \mathbb{R}^2$ is represented by $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$, and $\mathbf{w} = \mathbf{x} + \mathbf{y} + \mathbf{z}$. (e) $T: \mathbb{R}^3 \to \mathbb{R}^3$ is represented by $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 3 & 0 & 0 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$.
- (3) Suppose that T is a linear transformation that is not injective. Prove that there exists a non-zero element **u** in the domain of T such that $T(\mathbf{u}) = \mathbf{0}$.
- (4) Suppose that $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation n=2 or 3, m=2 or 3. Suppose that $\mathbf{x}_1, \dots \mathbf{x}_n$ is a basis for the domain of T. Show that T is injective if and only if $T(\mathbf{x}_1), \dots T(\mathbf{x}_n)$ is a linearly independent set in \mathbb{R}^m .
- (5) Suppose that $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation n=2 or 3, m=2 or 3. Suppose that $\mathbf{x}_1, \dots \mathbf{x}_n$ is a basis for the domain of T. Show that T is surjective if
- and only if $T(\mathbf{x}_1), \dots T(\mathbf{x}_n)$ is a spanning set in \mathbb{R}^m . (6) Suppose that $T : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation represented by a matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Prove that T is injective if and only if T is surjective (see the worksheet from last semester, due November 18th, for the answer to this). Prove also that T is injective if and only if $ad - bc \neq 0$.

1