
WORKSHEET #2

In this worksheet, we’ll learn about another way to think about continuity. First we need
to define some terms.

1. Definitions

Recall that given a set T (of things, possibly T is a bunch of numbers), a subset U of T is
a collection of things inside T . For example, {1, 2, 4, 7} is a subset of N. The even numbers
are also a subset of N. Furthermore N is a subset of Z and Z is a subset of Q. And finally
Q is a subset of R.

If U is a subset of T , we write U ⊆ T . So in the previous example, we have

{1, 2, 4, 7} ⊆ N ⊆ Z ⊆ Q ⊆ R.
Given two subsets U and V of R, we can construct two other subsets using them. The

union of two sets U and V , denoted by U ∪ V is the collection of all elements of R that are
in either U or V . The intersection of U and V , denoted by U ∩ V is all the elements of R
that are in both of U and V . See section 0-4 in the book for additional discussion of these
notions.

Hopefully the above was all pretty easy. We begin the real definitions with the notion of
the inverse image of a subset.

Definition 1.1. Let f : S → R be a function where S is the domain of f . Suppose that U
is a subset of R (that is, U ⊆ R). We define the inverse image of U under f , denoted by
f−1(U) to be the following subset of S.

f−1(U) = {x ∈ S|f(x) ∈ U}
In other words, f−1(U) is all the elements of S that f sends into U .

Example 1.2. Let f : R→ R be the function defined by the formula f(x) = x2. Let U be
the interval (1, 4). Then f−1(U) is made up of two intervals (−2,−1) and (1, 2). We can use
a union sign to represent f−1(U) = (−2,−1) ∪ (1, 2).

Exercise 1.3. Consider g : (−4π, 4π)→ R be defined by g(x) = sin(x). Suppose U = (0, 1).
Compute g−1(U).

Proof. It is easy to see that g−1(U) = (−4π,−7π/2) ∪ (−7π/2,−3π) ∪ (−2π,−3π/2) ∪
(−3π/2,−π) ∪ (0, π/2) ∪ (π/2, π) ∪ (2π, 5π/2) ∪ (5π/2, 3π). �
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Finally we define the notion of an open set.

Definition 1.4. We say that a subset U ⊂ R is open if for every element c ∈ U , there exists
a positive real number d > 0 such that (c− d, c+ d) ⊆ U .

Exercise 1.5. Suppose that U = (a, b) is a non-empty open interval. Prove that U is an
open set.

Proof. Choose c ∈ U . Let d = min(b − c, c − a) and note d > 0. We wish to show that
(c− d, c+ d) ⊆ U . It is sufficient to show that a ≤ c− d and b ≥ c+ d. But by the definition
of d, we know that d ≤ b − c and so rearranging gives us b ≥ c + d as desired. Likewise,
d ≤ c− a and so a ≤ c− d and we are done. �

Exercise 1.6. Give an example of an open subset of R that is not an open interval.

Proof. Let W = (0, 1) ∪ (1, 2). It is easy to see that U is not even an interval (let alone an
open one), since 1 /∈ U but 0.5 and 1.5 are in U . We need to now show that it is open.
Instead of proving this directly, we will refer to the next exercise. Note that U = (0, 1) and
V = (1, 2) are open by the previous exercise, so that U ∪V is open assuming we do the next
exercise correctly. �
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Exercise 1.7. Suppose that U and V are two open subsets of R. Prove that U ∪ V is an
open subset of R. Also prove that U ∩ V is an open subset of R.

Proof. First we do the situation of U ∪ V . Choose c ∈ U ∪ V . Then either c ∈ U or c ∈ V .
We do two cases. Case #1: if c ∈ U then since U is open, there exists some d > 0 so that
(c − d, c + d) ⊆ U . But U ⊆ U ∪ V so (c − d, c + d) ⊆ U ⊆ U ∪ V as desired. Case #2: if
c ∈ V then since V is open there exists a e > 0 such (c− e, c+ e) ⊆ V ⊆ U ∪ V as desired.

Now we prove that U ∩ V is open. Choose c ∈ U ∩ V . Then c ∈ U AND c ∈ V . Since
c ∈ U , there exists d1 > 0 such that (c− d1, c+ d1) ⊆ U . Likewise there exists a d2 > 0 such
that (c− d2, c+ d2) ⊆ V . Let d = min(d1, d2). Note that d ≤ d1 and d ≤ d2 by construction.
Then (c− d, c+ d) ⊆ (c− d1, c+ d1) and (c− d, c+ d) ⊆ (c− d2, c+ d2). But then

(c− d, c+ d) ⊆ (c− d1, c+ d1) ⊆ U

and
(c− d, c+ d) ⊆ (c− d2, c+ d2) ⊆ V.

So ever element of (c− d, c+ d) is in U , and every element is also in V . And so we conclude
that (c− d, c+ d) ⊆ U ∩ V as desired. �

Exercise 1.8. Suppose that a set U is open. Prove that U is a (possibly infinite) union of
open intervals.

Proof. For each c ∈ U , choose dc > 0 such that (c− dc, c+ dc) ⊆ U . Now consider⋃
c∈U

(c− dc, c+ dc).

We will show that this union is equal to U . First note that U ⊆
⋃

c∈U(c−dc, c+dc), because
for every point c0 ∈ U ,

c0 ∈ (c0 − dc0 , c0 + dc0) ⊆
⋃
c∈U

(c− dc, c+ dc).

On the other hand,
(⋃

c∈U(c− dc, c+ dc)
)
⊆ U because every term in the union is contained

in U . Thus �
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2. Another characterization of continuity

Our real goal for the day is the following theorem, that you will prove shortly.

Theorem 2.1. A function f : R→ R is continuous at every point c of R if and only if, for
every open subset U of R (thought of as in the codomain), f−1(U) is an open subset of R
(thought of as in the domain).

Note that in this theorem, there is an “if and only if”, which means both conditions are
equivalent.

Exercise 2.2. Suppose that f : R → R is continuous at every c ∈ R, prove that for every
open subset U of R, f−1(U) is an open subset of R.

Proof. Choose c ∈ f−1(U). Then f(c) ∈ U . Since U is open, there exists some e > 0
such that (f(c) − e, f(c) + e) ⊂ U . Then, since f is continuous at c (thinking of ε = e)
we know that there exists a d = δ such that for all x 6= c satisfying c − d < x < c + d
(in other words, x ∈ (c − d, c + d)), we have f(c) − e < f(x) < f(c) + e (in other words,
f(x) ∈ (f(c)− e, f(c) + e)). But then

f(x) ∈ (f(c)− e, f(c) + e) ⊆ U.

In other words, x ∈ f−1(U). So since this works for every x ∈ (c − d, c + d), we see that
(c− d, c+ d) ⊂ f−1(U) as desired (that is, we found our d). �

Exercise 2.3. Suppose that for every open subset U ⊆ R, we have f−1(U) is an open subset
of R. Prove that f is continuous.

Proof. Choose c ∈ R and pick ε > 0. Consider the open interval (f(c) − ε, f(c) + ε). By a
previous exercise, this interval is an open set. Call this open set U . By hypothesis, f−1(U) is
open, and since c ∈ f−1(U) (because f(c) ∈ (f(c)− ε, f(c) + ε) = U), we know there exists a
d > 0 such that (c−d, c+d) ⊆ f−1(U). Set δ = d. For any x 6= c such that c−d < x < c+d,
we see that x ∈ (c− d, c+ d). Therefore x ∈ f−1(U) and so f(x) ∈ U = (f(c)− ε, f(c) + ε)
which means that f(c)− ε < f(x) < f(c) + ε as desired. �
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