WORKSHEET #2

In this worksheet, we’ll learn about another way to think about continuity. First we need
to define some terms.

1. DEFINITIONS

Recall that given a set T (of things, possibly T is a bunch of numbers), a subset U of T is
a collection of things inside T'. For example, {1,2,4, 7} is a subset of N. The even numbers
are also a subset of N. Furthermore N is a subset of Z and Z is a subset of Q. And finally
Q is a subset of R.

If U is a subset of T', we write U C T'. So in the previous example, we have

{1,24 T}CNCZCQCR.

Given two subsets U and V' of R, we can construct two other subsets using them. The
union of two sets U and V, denoted by U UV is the collection of all elements of R that are
in either U or V. The intersection of U and V', denoted by U NV is all the elements of R
that are in both of U and V. See section 0-4 in the book for additional discussion of these
notions.

Hopefully the above was all pretty easy. We begin the real definitions with the notion of
the inverse image of a subset.

Definition 1.1. Let f : S — R be a function where S is the domain of f. Suppose that U
is a subset of R (that is, U C R). We define the inverse image of U under f, denoted by
f~HU) to be the following subset of S.

fHU) ={z € S|f(x) € U}
In other words, f~!(U) is all the elements of S that f sends into U.
Example 1.2. Let f : R — R be the function defined by the formula f(

T
the interval (1,4). Then f~!(U) is made up of two intervals (—2, —1) and (
a union sign to represent f~1(U) = (=2, —-1) U (1,2).

Exercise 1.3. Consider g : (—4m,47) — R be defined by g(x) = sin(z). Suppose U = (0, 1).
Compute g~ (U).

= 22, Let U be
,2). We can use

)
1

Proof. Tt is easy to see that ¢~ (U) = (—4m, —7n/2) U (=77/2,—37) U (=27, —3m/2) U
(=37/2,—m) U (0,7/2) U (w/2,7) U (2w, 57/2) U (57 /2, 3). O



Finally we define the notion of an open set.

Definition 1.4. We say that a subset U C R is open if for every element ¢ € U, there exists
a positive real number d > 0 such that (¢ — d,c+d) C U.

Exercise 1.5. Suppose that U = (a,b) is a non-empty open interval. Prove that U is an
open set.

Proof. Choose ¢ € U. Let d = min(b — ¢,¢ — a) and note d > 0. We wish to show that
(c—d,c+d) CU. It is sufficient to show that a < ¢—d and b > ¢+ d. But by the definition
of d, we know that d < b — ¢ and so rearranging gives us b > ¢ + d as desired. Likewise,
d<c—aandsoa<c—dand we are done. O

Exercise 1.6. Give an example of an open subset of R that is not an open interval.

Proof. Let W = (0,1) U (1,2). It is easy to see that U is not even an interval (let alone an
open one), since 1 ¢ U but 0.5 and 1.5 are in U. We need to now show that it is open.
Instead of proving this directly, we will refer to the next exercise. Note that U = (0, 1) and
V' = (1,2) are open by the previous exercise, so that U UV is open assuming we do the next
exercise correctly. 0



Exercise 1.7. Suppose that U and V are two open subsets of R. Prove that U UV is an
open subset of R. Also prove that U NV is an open subset of R.

Proof. First we do the situation of U U V. Choose ¢ € U U V. Then either c € U or c € V.
We do two cases. Case #1: if ¢ € U then since U is open, there exists some d > 0 so that
(c—dyc+d) CU. BtUCUUV o (c—d,c+d) CUCUUYV as desired. Case #2: if
¢ € V then since V is open there exists a e > 0 such (c —e,c+¢) CV CU UV as desired.

Now we prove that U NV is open. Choose c € UNV. Then ¢ € U AND ¢ € V. Since
¢ € U, there exists d; > 0 such that (¢ —dy,c+dy) C U. Likewise there exists a da > 0 such
that (¢ —dy,c+dy) C V. Let d = min(dy, dy). Note that d < d; and d < dy by construction.
Then (¢ —d,c+d) C (¢ —dy,c+dy) and (¢ —d,c+d) C (¢ — dg, ¢ + dg). But then

(c—d,c+d)C(c—dy,c+dy) CU
and
(c—d,c+d) C(c—dy,c+dy) CV.

So ever element of (¢ —d,c+d) is in U, and every element is also in V. And so we conclude
that (c —d,c+d) CUNV as desired. O

Exercise 1.8. Suppose that a set U is open. Prove that U is a (possibly infinite) union of
open intervals.

Proof. For each ¢ € U, choose d. > 0 such that (¢ — d.,c+ d.) C U. Now consider

U(c—dc,c—i—dc).

celU

We will show that this union is equal to U. First note that U C J ., (c —d., c+d.), because
for every point ¢y € U,

Co € (CO - dCO7CO +d60) g U(C_ d67c+dc)'
celU

On the other hand, (J,c (¢ — de, ¢+ d.)) C U because every term in the union is contained
in U. Thus [



2. ANOTHER CHARACTERIZATION OF CONTINUITY
Our real goal for the day is the following theorem, that you will prove shortly.

Theorem 2.1. A function f : R — R is continuous at every point ¢ of R if and only if, for
every open subset U of R (thought of as in the codomain), f~Y(U) is an open subset of R
(thought of as in the domain).

Note that in this theorem, there is an “if and only if”, which means both conditions are
equivalent.

Exercise 2.2. Suppose that f : R — R is continuous at every ¢ € R, prove that for every
open subset U of R, f~}(U) is an open subset of R.

Proof. Choose ¢ € f~'(U). Then f(c) € U. Since U is open, there exists some ¢ > 0
such that (f(c) —e, f(c) +e) C U. Then, since f is continuous at ¢ (thinking of € = e)
we know that there exists a d = § such that for all x # ¢ satisfying ¢c —d < x < ¢+ d
(in other words, z € (¢ — d,c+ d)), we have f(c) —e < f(x) < f(c) + e (in other words,
f(z) € (f(c) —e, f(c) +e)). But then

f(x) e (fle)—e fle)+e) CU.

In other words, x € f~!(U). So since this works for every z € (¢ — d,c + d), we see that
(c—d,c+d) C f~1(U) as desired (that is, we found our d). O

Exercise 2.3. Suppose that for every open subset U C R, we have f~(U) is an open subset
of R. Prove that f is continuous.

Proof. Choose ¢ € R and pick € > 0. Consider the open interval (f(c) — ¢, f(c) +¢€). By a
previous exercise, this interval is an open set. Call this open set U. By hypothesis, f~1(U) is
open, and since ¢ € f~1(U) (because f(c) € (f(c) —¢, f(c)+¢€) = U), we know there exists a
d > 0 such that (c—d,c+d) C f~1(U). Set § = d. For any z # c such that c—d < z < c+d,
we see that z € (¢ — d,c+ d). Therefore z € f~H(U) and so f(x) € U = (f(c) — ¢, f(c) +¢)
which means that f(c) —e < f(z) < f(c) + € as desired. O



