SOLUTION TO HOMEWORK #4, PROBLEM (5)

(5) Suppose that f is a function that is continuous at a and that f(a) > 0. Show that there exists an open interval (b, c) containing a such that f(x) > 0 for all $x \in (b, c)$.

Proof. Set $\varepsilon = f(a)/2$. Notice that $\varepsilon > 0$ because f(a) > 0. Because f is continuous, there exists a δ such that whenever x satisfies $|x - a| < \delta$, then we have that $|f(x) - f(a)| < \varepsilon = f(a)/2$. ¹ Set $b = a - \delta$, $c = a + \delta$. Saying that $|x - a| < \delta$ is exactly the same thing as asserting that $x \in (b, c)$. Thus all we have to do is verify that for those x, f(x) > 0. But now |f(x) - f(a)| < f(a)/2 implies that f(a) - f(x) < f(a)/2. Re-arranging this last inequality gives us f(x) > f(a)/2 > 0 which is what we wanted.

Remark 0.1. In the previous proof, you could have replaced the $\varepsilon = f(a)/2$ with f(a), or f(a)/7 etc. But $\varepsilon = 2f(a)$ won't work! (Explain to yourself why that is).

You may ask how one comes up with the particular ε we used. To see this, draw yourself a picture. We know that f(a) > 0, so in this problem our goal is to force f(x) above zero for x near a. For a continuous graph, this should be pretty obviously true, so what ϵ interval do you need to pick on the y-axis to make it true?

¹Notice I didn't put the 0 < before the |x - a|, I can do that because we are assuming that f is continuous so that the case when x = a is automatically satisfied.