
NOTES ON CONNECTED AND DISCONNECTED SETS

In this worksheet, we’ll learn about another way to think about continuity. First we need
to define some terms.

Definition 0.1. A subset K ⊆ [a, b] is called an open subset of [a, b] if there exists an open
set U of R such that U ∩ [a, b] = K.

Proposition 0.2. Suppose that f : [a, b] → R is a function. Then f is continuous if and
only if for every open subset U of R, f−1(U) is an open subset of [a, b].

Remark 0.3. This proposition is kind of a pain to prove because there are so many special
cases to write down. But hopefully no special case is very hard.

Proof. We have two directions to prove. First suppose that f is continuous. Let U be an
open subset of R we need to show that f−1(U) = U ′ ∩ [a, b] for some open U ′ (which will
show that f−1(U) is an open subset of [a, b]). Set

U ′ = f−1(U) ∪ (a− 3, a) ∪ (b, b+ 2)

We need to show that U ′ is open and that U ′ ∩ [a, b] = f−1(U). The second statement is
easy because U ′ ∩ [a, b] = {x ∈ R|x ∈ f−1(U)} (the other parts of the set U ′ aren’t in [a, b]).
To show that U ′ is open choose x0 ∈ U ′. Since U is open, there exists ε > 0 such that
(x− ε, x+ ε) ⊆ U . There are now five cases.

(1) x0 = a. Since f is continuous at a, there exists δ > 0 such that for x ∈ [a, a + δ),
f(x) ∈ (x−ε, x+ε) ⊆ U so that x ∈ f−1(U). Set d = min(δ, 3). Then we immediately
see that (a− d, a+ d) ⊆ (a− 3, a)∪ [a, a+ δ) ⊆ (a− 3, a)∪ f−1(U) ⊆ U ′, as desired.

(2) x0 = b. Since f is continuous at b, there exists δ > 0 such that for x ∈ (b − δ, b],
f(x) ∈ (x−ε, x+ε) ⊆ U so that x ∈ f−1(U). Set d = min(δ, 2). Then we immediately
see that (b− d, b+ d) ⊆ (b− δ, b] ∪ (b, b+ 2) ⊆ f−1(U) ∪ (b, b+ 2) ⊆ U ′, as desired.

(3) x0 ∈ (a, b). In this case, there exists a δ > 0 such that for all x ∈ (x0−δ, x0+δ) ⊆ [a, b],
we have that f(x) ∈ (x− ε, x+ ε) ⊆ U . In particular, (x0− δ, x0 + δ) ⊆ f−1(U) ⊆ U ′.

(4) x0 ∈ (a − 3, a). But (a − 3, a) is an open set so we can find d > 0 such that
(x0 − d, x0 + d) ⊆ (a− 3, a) ⊆ U ′.

(5) x0 ∈ (b, b + 2). But (b, b + 2) is an open set so we can find d > 0 such that (x0 −
d, x0 + d) ⊆ (b, b+ 2) ⊆ U ′.

Therefore U ′ is open and we are done with the first direction.
Now suppose that f satisfies the property that for every open set U ⊆ R, f−1(U) is an

open subseteq of [a, b]. We need to show that f is continuous. Choose c ∈ [a, b] and fix
ε > 0. Observe that U = (f(c)− ε, f(c) + ε) is open, and so is its inverse image by f , so that
there exists an open set U ′ ⊆ R such that U ′ ∩ [a, b] = f−1(U). We do three cases.

(1) c ∈ (a, b). Thus c ∈ (a, b) ∩ U ′ which is also open. So there exists a δ = d > 0
such that (c − d, c + d) ⊆ (a, b) ∩ U ′. For any x ∈ (c − d, c + d), we have that
x ∈ f−1(U) = U ′ ∩ [a, b]. Thus f(x) ∈ (f(c)− ε, f(c) + ε) as desired.
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(2) c = a. So there exists a d > 0 such that (c−d, c+d) ⊆ U ′. Choose δ = min(d, b−a).
Then for x ∈ [c, c+ δ) ⊆ [a, b] ∩ U ′ = f−1(U), we see that f(x) ∈ (f(c)− ε, f(c) + ε)
as desired.

(3) c = b. So there exists a d > 0 such that (c−d, c+d) ⊆ U ′. Choose δ = min(d, b−a).
Then for x ∈ (c− δ, c] ⊆ [a, b] ∩ U ′ = f−1(U), we see that f(x) ∈ (f(c)− ε, f(c) + ε)
as desired.

This completes the proof of the other direction. �

Definition 0.4. A set of real numbers A is called disconnected if there exist two open subsets
of R, call them U and V such that

(1) A ∩ U ∩ V = ∅.
(2) A ⊆ U ∪ V
(3) A ∩ U 6= ∅.
(4) A ∩ V 6= ∅.

In such a case, we call U and V form a disconnection of A (or we simply say they disconnect
A).

A set of real numbers A is called connected if it is not disconnected.

Example 0.5. The set (0, 1) ∪ (1, 2) is disconnected. Choose U = (0, 1) and V = (1, 2).
U ∩ V = ∅ so condition (1) is satisfied. U ∪ V = A so condition (2) is satisfied. We also
have A∩U = (0, 1) 6= ∅, so condition (3) is satisfied. Finally we have that A∩ V = (1, 2) so
condition (4) is satisfied.

Example 0.6. The set Z is disconnected. Choose U = (−∞, 0.5), V = (0.5,∞). I’ll let you
verify statements (1) through (4).

Example 0.7. Suppose that a, b ∈ A, and that a < b. Further suppose that a < c < b but
that c /∈ A. Let U = (−∞, c), V = (c,∞).

Proposition 0.8. Suppose that f : [a, b] → R is continuous. Further suppose that D is a
disconnected non-empty subset of the image of f (ie, V is disconnected, D ⊆ {image of f}).
Then the set f−1(D) is disconnected.

Proof. By assumption, there exists open sets U and V that disconnect D. Note that f−1(U)
is an open subset of [a, b] and also that f−1(V ) is an open subset of [a, b]. Thus, there exist
open sets U ′ and V ′ such that U ′ ∩ [a, b] = f−1(U) and V ′ ∩ [a, b] = f−a(V ). I claim that U ′

and V ′ disconnect f−1(D). To show this we have to verify properties (1) through (4) from
above.

To verify (1), suppose that x ∈ f−1(D) ∩ U ′ ∩ V ′, we will aim for a contradiction. Thus
f(x) ∈ D. On the other hand, x ∈ f−1(D) ⊆ [a, b] so x ∈ U ′∩ [a, b] = f−1(U). In particular,
f(x) ∈ U . Likewise, x ∈ V ′ ∩ [a, b] so that x ∈ f−1(V ). Therefore f(x) ∈ V . Thus
f(x) ∈ U ∩ V ∩D = ∅, a contradiction.

To verify (2), suppose that x ∈ f−1(D). We will show that x ∈ U ′ ∪ V ′. Note first that
f(x) ∈ D ⊆ U ∪ V . Thus either f(x) ∈ U of f(x) ∈ V . In the first case, we see that
x ∈ f−1(U) ⊆ U ′. In the second case we obtain that x ∈ f−1(V ) ⊆ V ′. Thus in either case
x ∈ U ′ ∪ V ′ and (2) is verified.

To verify (3), choose y ∈ D ∩ U (note such a y exists by hypothesis). Since y ∈ D ⊆
image of f there exists x ∈ [a, b] such that f(x) = y. In particular, f(x) ∈ U . But then
x ∈ f−1(U) ⊆ U ′.
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The proof of (4) is exactly the same as the proof of (3) if you replace all the Us with
V s. �

Theorem 0.9. Suppose that a < b. Show that [a, b] is connected.

Proof. Suppose that [a, b] is not connected and let U , V be a disconnection. We will obtain
a contradiction. Note first that either a ∈ U or a ∈ V . Without loss of generality, we may
assume that a ∈ U (for if not, relabel U and V ). Set S to be the set {x > a|[a, x) ⊆ U}.
First let us make a few observations about the set S. Note that S is bounded above by any
element of V ∩ [a, b] and such an element must since V is part of a disconnection of [a, b].
Therefore S has a least upper bound, call it L, note L ≤ b. I claim that (a, L) ⊆ U . To see
this claim, suppose not. Suppose that z ∈ (a, L) and that z /∈ U . Then z ∈ V ∩ [a, b] and so
z is bigger than every element of S. So z is an upper bound for S. But z < L, contradicting
the fact that L is a least upper bound. Now, L ∈ [a, b] ⊂ U ∪ V , so there are two cases.

(1) L ∈ U . In this case, we can find a d > 0 such that (L − d, L + d) ⊆ U . But then
[a, L + d) = [a, L) ∪ (L − d, L + d) ⊆ U . In particular, L + d ∈ S. This contradicts
the fact that L is an upper bound for S since L+ d > L.

(2) L ∈ V . In this case, we can find a d > 0 such that (L−d, L+d) ⊆ V . Note L−d > a
since a /∈ V . Choose z = L − d/2. This number is in V . Thus z is an upper bound
for S. But note that z < L which contradicts the fact that L is a least upper bound.

So in either case, we have a contradiction which completes the proof. �

Theorem 0.10. Prove that if f : [a, b]→ R is continuous, that the image of f is connected.

Proof. Suppose not, then D = image of f is disconnected. So [a, b] = f−1(D) is also
disconnected by Proposition 0.8. But that contradicts Theorem 0.9. �
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